Loading…
P21 deficiency delays regeneration of skeletal muscular tissue
The potential relationship between cell cycle checkpoint control and tissue regeneration has been indicated. Despite considerable research being focused on the relationship between p21 and myogenesis, p21 function in skeletal muscle regeneration remains unclear. To clarify this, muscle injury model...
Saved in:
Published in: | PloS one 2015-05, Vol.10 (5), p.e0125765-e0125765 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c820t-746ed591ff6b9ecf965a8d8f6499a96204bedf39b537d6b632124efd639e311d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c820t-746ed591ff6b9ecf965a8d8f6499a96204bedf39b537d6b632124efd639e311d3 |
container_end_page | e0125765 |
container_issue | 5 |
container_start_page | e0125765 |
container_title | PloS one |
container_volume | 10 |
creator | Chinzei, Nobuaki Hayashi, Shinya Ueha, Takeshi Fujishiro, Takaaki Kanzaki, Noriyuki Hashimoto, Shingo Sakata, Shuhei Kihara, Shinsuke Haneda, Masahiko Sakai, Yoshitada Kuroda, Ryosuke Kurosaka, Masahiro |
description | The potential relationship between cell cycle checkpoint control and tissue regeneration has been indicated. Despite considerable research being focused on the relationship between p21 and myogenesis, p21 function in skeletal muscle regeneration remains unclear. To clarify this, muscle injury model was recreated by intramuscular injection of bupivacaine hydrochloride in the soleus of p21 knockout (KO) mice and wild type (WT) mice. The mice were sacrificed at 3, 14, and 28 days post-operation. The results of hematoxylin-eosin staining and immunofluorescence of muscle membrane indicated that muscle regeneration was delayed in p21 KO mice. Cyclin D1 mRNA expression and both Ki-67 and PCNA immunohistochemistry suggested that p21 deficiency increased cell cycle and muscle cell proliferation. F4/80 immunohistochemistry also suggested the increase of immune response in p21 KO mice. On the other hand, both the mRNA expression and western blot analysis of MyoD, myogenin, and Pax7 indicated that muscular differentiation was delayed in p21KO mice. Considering these results, we confirmed that muscle injury causes an increase in cell proliferation. However, muscle differentiation in p21 KO mice was inhibited due to the low expression of muscular synthesis genes, leading to a delay in the muscular regeneration. Thus, we conclude that p21 plays an important role in the in vivo healing process in muscular injury. |
doi_str_mv | 10.1371/journal.pone.0125765 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1678772085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430193531</galeid><doaj_id>oai_doaj_org_article_3a2d35307557435abb91ee493871478b</doaj_id><sourcerecordid>A430193531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c820t-746ed591ff6b9ecf965a8d8f6499a96204bedf39b537d6b632124efd639e311d3</originalsourceid><addsrcrecordid>eNqNkltrFDEYhgdRbK3-A9EBQfRi15wzuSmU4mGhUPF0GzIzX3azZifbZEbcf2_WnZYd6YXkIiF5vjff4S2K5xjNMZX43ToMsTN-vg0dzBEmXAr-oDjFipKZIIg-PDqfFE9SWiPEaSXE4-KEcMUIk_i0OP9McNmCdY2Drtnloze7VEZYQgfR9C50ZbBl-gkeeuPLzZCawZtY9i6lAZ4Wj6zxCZ6N-1nx_cP7b5efZlfXHxeXF1ezpiKon0kmoOUKWytqBY1VgpuqraxgShmVM2Q1tJaqmlPZilpQggkD2wqqgGLc0rPi5UF360PSY-lJYyErKQmqeCYWB6INZq230W1M3OlgnP57EeJSm9i7xoOmhrSUUyQ5l4xyU9cKAzBFK4mZrOqsdT7-NtQbaBvo-mj8RHT60rmVXoZfmjGCSMWywJtRIIabAVKvNy414L3pIAz7vCuEc-aIZvTVP-j91Y3U0uQCXGdD_rfZi-oLRlEeNKc4U_N7qLxa2Lgm-8S6fD8JeDsJyEwPv_ulGVLSi69f_p-9_jFlXx-xKzC-X6Xgh72d0hRkB7CJIaUI9q7JGOm9zW-7ofc216PNc9iL4wHdBd36mv4B2oL1gA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678772085</pqid></control><display><type>article</type><title>P21 deficiency delays regeneration of skeletal muscular tissue</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chinzei, Nobuaki ; Hayashi, Shinya ; Ueha, Takeshi ; Fujishiro, Takaaki ; Kanzaki, Noriyuki ; Hashimoto, Shingo ; Sakata, Shuhei ; Kihara, Shinsuke ; Haneda, Masahiko ; Sakai, Yoshitada ; Kuroda, Ryosuke ; Kurosaka, Masahiro</creator><contributor>Kumar, Ashok</contributor><creatorcontrib>Chinzei, Nobuaki ; Hayashi, Shinya ; Ueha, Takeshi ; Fujishiro, Takaaki ; Kanzaki, Noriyuki ; Hashimoto, Shingo ; Sakata, Shuhei ; Kihara, Shinsuke ; Haneda, Masahiko ; Sakai, Yoshitada ; Kuroda, Ryosuke ; Kurosaka, Masahiro ; Kumar, Ashok</creatorcontrib><description>The potential relationship between cell cycle checkpoint control and tissue regeneration has been indicated. Despite considerable research being focused on the relationship between p21 and myogenesis, p21 function in skeletal muscle regeneration remains unclear. To clarify this, muscle injury model was recreated by intramuscular injection of bupivacaine hydrochloride in the soleus of p21 knockout (KO) mice and wild type (WT) mice. The mice were sacrificed at 3, 14, and 28 days post-operation. The results of hematoxylin-eosin staining and immunofluorescence of muscle membrane indicated that muscle regeneration was delayed in p21 KO mice. Cyclin D1 mRNA expression and both Ki-67 and PCNA immunohistochemistry suggested that p21 deficiency increased cell cycle and muscle cell proliferation. F4/80 immunohistochemistry also suggested the increase of immune response in p21 KO mice. On the other hand, both the mRNA expression and western blot analysis of MyoD, myogenin, and Pax7 indicated that muscular differentiation was delayed in p21KO mice. Considering these results, we confirmed that muscle injury causes an increase in cell proliferation. However, muscle differentiation in p21 KO mice was inhibited due to the low expression of muscular synthesis genes, leading to a delay in the muscular regeneration. Thus, we conclude that p21 plays an important role in the in vivo healing process in muscular injury.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0125765</identifier><identifier>PMID: 25942471</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antigens, Differentiation - metabolism ; Arthritis ; Bone surgery ; Bupivacaine ; Care and treatment ; Cell cycle ; Cell Membrane - metabolism ; Cell proliferation ; Cyclin D1 ; Cyclin D1 - genetics ; Cyclin-dependent kinase inhibitor p21 ; Cyclin-Dependent Kinase Inhibitor p21 - deficiency ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; Cyclin-dependent kinases ; Deoxyribonucleic acid ; Development and progression ; Differentiation ; DNA ; Gene expression ; Immune response ; Immune system ; Immunofluorescence ; Immunohistochemistry ; Injuries ; Ki-67 Antigen - metabolism ; Laboratory animals ; Medicine ; Mice ; Mice, Knockout ; Muscle Development - genetics ; Muscle recovery ; Muscle, Skeletal - anatomy & histology ; Muscle, Skeletal - cytology ; Muscle, Skeletal - injuries ; Muscle, Skeletal - physiology ; Muscles ; Musculoskeletal system ; MyoD protein ; Myogenesis ; Myogenin ; Orthopedics ; Proliferating cell nuclear antigen ; Proliferating Cell Nuclear Antigen - metabolism ; Regeneration ; Regeneration - genetics ; RNA, Messenger - genetics ; Rodents ; Skeletal muscle ; Sports injuries ; Tissue engineering ; University graduates ; Wound Healing - genetics</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0125765-e0125765</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Chinzei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Chinzei et al 2015 Chinzei et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c820t-746ed591ff6b9ecf965a8d8f6499a96204bedf39b537d6b632124efd639e311d3</citedby><cites>FETCH-LOGICAL-c820t-746ed591ff6b9ecf965a8d8f6499a96204bedf39b537d6b632124efd639e311d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1678772085/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1678772085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25942471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kumar, Ashok</contributor><creatorcontrib>Chinzei, Nobuaki</creatorcontrib><creatorcontrib>Hayashi, Shinya</creatorcontrib><creatorcontrib>Ueha, Takeshi</creatorcontrib><creatorcontrib>Fujishiro, Takaaki</creatorcontrib><creatorcontrib>Kanzaki, Noriyuki</creatorcontrib><creatorcontrib>Hashimoto, Shingo</creatorcontrib><creatorcontrib>Sakata, Shuhei</creatorcontrib><creatorcontrib>Kihara, Shinsuke</creatorcontrib><creatorcontrib>Haneda, Masahiko</creatorcontrib><creatorcontrib>Sakai, Yoshitada</creatorcontrib><creatorcontrib>Kuroda, Ryosuke</creatorcontrib><creatorcontrib>Kurosaka, Masahiro</creatorcontrib><title>P21 deficiency delays regeneration of skeletal muscular tissue</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The potential relationship between cell cycle checkpoint control and tissue regeneration has been indicated. Despite considerable research being focused on the relationship between p21 and myogenesis, p21 function in skeletal muscle regeneration remains unclear. To clarify this, muscle injury model was recreated by intramuscular injection of bupivacaine hydrochloride in the soleus of p21 knockout (KO) mice and wild type (WT) mice. The mice were sacrificed at 3, 14, and 28 days post-operation. The results of hematoxylin-eosin staining and immunofluorescence of muscle membrane indicated that muscle regeneration was delayed in p21 KO mice. Cyclin D1 mRNA expression and both Ki-67 and PCNA immunohistochemistry suggested that p21 deficiency increased cell cycle and muscle cell proliferation. F4/80 immunohistochemistry also suggested the increase of immune response in p21 KO mice. On the other hand, both the mRNA expression and western blot analysis of MyoD, myogenin, and Pax7 indicated that muscular differentiation was delayed in p21KO mice. Considering these results, we confirmed that muscle injury causes an increase in cell proliferation. However, muscle differentiation in p21 KO mice was inhibited due to the low expression of muscular synthesis genes, leading to a delay in the muscular regeneration. Thus, we conclude that p21 plays an important role in the in vivo healing process in muscular injury.</description><subject>Animals</subject><subject>Antigens, Differentiation - metabolism</subject><subject>Arthritis</subject><subject>Bone surgery</subject><subject>Bupivacaine</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell Membrane - metabolism</subject><subject>Cell proliferation</subject><subject>Cyclin D1</subject><subject>Cyclin D1 - genetics</subject><subject>Cyclin-dependent kinase inhibitor p21</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>Cyclin-dependent kinases</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>Differentiation</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunofluorescence</subject><subject>Immunohistochemistry</subject><subject>Injuries</subject><subject>Ki-67 Antigen - metabolism</subject><subject>Laboratory animals</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Muscle Development - genetics</subject><subject>Muscle recovery</subject><subject>Muscle, Skeletal - anatomy & histology</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - injuries</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>MyoD protein</subject><subject>Myogenesis</subject><subject>Myogenin</subject><subject>Orthopedics</subject><subject>Proliferating cell nuclear antigen</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Regeneration</subject><subject>Regeneration - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><subject>Sports injuries</subject><subject>Tissue engineering</subject><subject>University graduates</subject><subject>Wound Healing - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEYhgdRbK3-A9EBQfRi15wzuSmU4mGhUPF0GzIzX3azZifbZEbcf2_WnZYd6YXkIiF5vjff4S2K5xjNMZX43ToMsTN-vg0dzBEmXAr-oDjFipKZIIg-PDqfFE9SWiPEaSXE4-KEcMUIk_i0OP9McNmCdY2Drtnloze7VEZYQgfR9C50ZbBl-gkeeuPLzZCawZtY9i6lAZ4Wj6zxCZ6N-1nx_cP7b5efZlfXHxeXF1ezpiKon0kmoOUKWytqBY1VgpuqraxgShmVM2Q1tJaqmlPZilpQggkD2wqqgGLc0rPi5UF360PSY-lJYyErKQmqeCYWB6INZq230W1M3OlgnP57EeJSm9i7xoOmhrSUUyQ5l4xyU9cKAzBFK4mZrOqsdT7-NtQbaBvo-mj8RHT60rmVXoZfmjGCSMWywJtRIIabAVKvNy414L3pIAz7vCuEc-aIZvTVP-j91Y3U0uQCXGdD_rfZi-oLRlEeNKc4U_N7qLxa2Lgm-8S6fD8JeDsJyEwPv_ulGVLSi69f_p-9_jFlXx-xKzC-X6Xgh72d0hRkB7CJIaUI9q7JGOm9zW-7ofc216PNc9iL4wHdBd36mv4B2oL1gA</recordid><startdate>20150505</startdate><enddate>20150505</enddate><creator>Chinzei, Nobuaki</creator><creator>Hayashi, Shinya</creator><creator>Ueha, Takeshi</creator><creator>Fujishiro, Takaaki</creator><creator>Kanzaki, Noriyuki</creator><creator>Hashimoto, Shingo</creator><creator>Sakata, Shuhei</creator><creator>Kihara, Shinsuke</creator><creator>Haneda, Masahiko</creator><creator>Sakai, Yoshitada</creator><creator>Kuroda, Ryosuke</creator><creator>Kurosaka, Masahiro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150505</creationdate><title>P21 deficiency delays regeneration of skeletal muscular tissue</title><author>Chinzei, Nobuaki ; Hayashi, Shinya ; Ueha, Takeshi ; Fujishiro, Takaaki ; Kanzaki, Noriyuki ; Hashimoto, Shingo ; Sakata, Shuhei ; Kihara, Shinsuke ; Haneda, Masahiko ; Sakai, Yoshitada ; Kuroda, Ryosuke ; Kurosaka, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c820t-746ed591ff6b9ecf965a8d8f6499a96204bedf39b537d6b632124efd639e311d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antigens, Differentiation - metabolism</topic><topic>Arthritis</topic><topic>Bone surgery</topic><topic>Bupivacaine</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell Membrane - metabolism</topic><topic>Cell proliferation</topic><topic>Cyclin D1</topic><topic>Cyclin D1 - genetics</topic><topic>Cyclin-dependent kinase inhibitor p21</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - deficiency</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>Cyclin-dependent kinases</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>Differentiation</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunofluorescence</topic><topic>Immunohistochemistry</topic><topic>Injuries</topic><topic>Ki-67 Antigen - metabolism</topic><topic>Laboratory animals</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Muscle Development - genetics</topic><topic>Muscle recovery</topic><topic>Muscle, Skeletal - anatomy & histology</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - injuries</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>MyoD protein</topic><topic>Myogenesis</topic><topic>Myogenin</topic><topic>Orthopedics</topic><topic>Proliferating cell nuclear antigen</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Regeneration</topic><topic>Regeneration - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><topic>Sports injuries</topic><topic>Tissue engineering</topic><topic>University graduates</topic><topic>Wound Healing - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chinzei, Nobuaki</creatorcontrib><creatorcontrib>Hayashi, Shinya</creatorcontrib><creatorcontrib>Ueha, Takeshi</creatorcontrib><creatorcontrib>Fujishiro, Takaaki</creatorcontrib><creatorcontrib>Kanzaki, Noriyuki</creatorcontrib><creatorcontrib>Hashimoto, Shingo</creatorcontrib><creatorcontrib>Sakata, Shuhei</creatorcontrib><creatorcontrib>Kihara, Shinsuke</creatorcontrib><creatorcontrib>Haneda, Masahiko</creatorcontrib><creatorcontrib>Sakai, Yoshitada</creatorcontrib><creatorcontrib>Kuroda, Ryosuke</creatorcontrib><creatorcontrib>Kurosaka, Masahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints database</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical & Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chinzei, Nobuaki</au><au>Hayashi, Shinya</au><au>Ueha, Takeshi</au><au>Fujishiro, Takaaki</au><au>Kanzaki, Noriyuki</au><au>Hashimoto, Shingo</au><au>Sakata, Shuhei</au><au>Kihara, Shinsuke</au><au>Haneda, Masahiko</au><au>Sakai, Yoshitada</au><au>Kuroda, Ryosuke</au><au>Kurosaka, Masahiro</au><au>Kumar, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P21 deficiency delays regeneration of skeletal muscular tissue</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-05</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0125765</spage><epage>e0125765</epage><pages>e0125765-e0125765</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The potential relationship between cell cycle checkpoint control and tissue regeneration has been indicated. Despite considerable research being focused on the relationship between p21 and myogenesis, p21 function in skeletal muscle regeneration remains unclear. To clarify this, muscle injury model was recreated by intramuscular injection of bupivacaine hydrochloride in the soleus of p21 knockout (KO) mice and wild type (WT) mice. The mice were sacrificed at 3, 14, and 28 days post-operation. The results of hematoxylin-eosin staining and immunofluorescence of muscle membrane indicated that muscle regeneration was delayed in p21 KO mice. Cyclin D1 mRNA expression and both Ki-67 and PCNA immunohistochemistry suggested that p21 deficiency increased cell cycle and muscle cell proliferation. F4/80 immunohistochemistry also suggested the increase of immune response in p21 KO mice. On the other hand, both the mRNA expression and western blot analysis of MyoD, myogenin, and Pax7 indicated that muscular differentiation was delayed in p21KO mice. Considering these results, we confirmed that muscle injury causes an increase in cell proliferation. However, muscle differentiation in p21 KO mice was inhibited due to the low expression of muscular synthesis genes, leading to a delay in the muscular regeneration. Thus, we conclude that p21 plays an important role in the in vivo healing process in muscular injury.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25942471</pmid><doi>10.1371/journal.pone.0125765</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-05, Vol.10 (5), p.e0125765-e0125765 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1678772085 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Antigens, Differentiation - metabolism Arthritis Bone surgery Bupivacaine Care and treatment Cell cycle Cell Membrane - metabolism Cell proliferation Cyclin D1 Cyclin D1 - genetics Cyclin-dependent kinase inhibitor p21 Cyclin-Dependent Kinase Inhibitor p21 - deficiency Cyclin-Dependent Kinase Inhibitor p21 - genetics Cyclin-Dependent Kinase Inhibitor p21 - metabolism Cyclin-dependent kinases Deoxyribonucleic acid Development and progression Differentiation DNA Gene expression Immune response Immune system Immunofluorescence Immunohistochemistry Injuries Ki-67 Antigen - metabolism Laboratory animals Medicine Mice Mice, Knockout Muscle Development - genetics Muscle recovery Muscle, Skeletal - anatomy & histology Muscle, Skeletal - cytology Muscle, Skeletal - injuries Muscle, Skeletal - physiology Muscles Musculoskeletal system MyoD protein Myogenesis Myogenin Orthopedics Proliferating cell nuclear antigen Proliferating Cell Nuclear Antigen - metabolism Regeneration Regeneration - genetics RNA, Messenger - genetics Rodents Skeletal muscle Sports injuries Tissue engineering University graduates Wound Healing - genetics |
title | P21 deficiency delays regeneration of skeletal muscular tissue |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P21%20deficiency%20delays%20regeneration%20of%20skeletal%20muscular%20tissue&rft.jtitle=PloS%20one&rft.au=Chinzei,%20Nobuaki&rft.date=2015-05-05&rft.volume=10&rft.issue=5&rft.spage=e0125765&rft.epage=e0125765&rft.pages=e0125765-e0125765&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0125765&rft_dat=%3Cgale_plos_%3EA430193531%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c820t-746ed591ff6b9ecf965a8d8f6499a96204bedf39b537d6b632124efd639e311d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1678772085&rft_id=info:pmid/25942471&rft_galeid=A430193531&rfr_iscdi=true |