Loading…

TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization

Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to ir...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-05, Vol.10 (5), p.e0127506-e0127506
Main Authors: Liao, HeBin, Cheng, XingJun, Zhu, DeKang, Wang, MingShu, Jia, RenYong, Chen, Shun, Chen, XiaoYue, Biville, Francis, Liu, MaFeng, Cheng, AnChun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-7dcd05f3e2dfb868a7023e83540faa647e04923409be33e95f45af4ae9315e6c3
cites cdi_FETCH-LOGICAL-c692t-7dcd05f3e2dfb868a7023e83540faa647e04923409be33e95f45af4ae9315e6c3
container_end_page e0127506
container_issue 5
container_start_page e0127506
container_title PloS one
container_volume 10
creator Liao, HeBin
Cheng, XingJun
Zhu, DeKang
Wang, MingShu
Jia, RenYong
Chen, Shun
Chen, XiaoYue
Biville, Francis
Liu, MaFeng
Cheng, AnChun
description Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three TonB proteins responsible for energy transduction. These three tonB genes are present in all the R. anatipestifer genomes sequenced so far. Two of these genes are contained within the exbB-exbD-tonB1 and exbB-exbD-exbD-tonB2 operons. The third, tonB3, forms a monocistronic transcription unit. The inability to recover derivatives deleted for this gene suggests its product is essential for R. anatipestifer growth. Here, we show that deletion of tonB1 had no effect on hemin uptake of R. anatipestifer, though disruption of tonB2 strongly decreases hemin uptake, and disruption of both tonB1 and tonB2 abolishes the transport of exogenously added hemin. The ability of R. anatipestifer to grow on iron-depleted medium is decreased by tonB2 but not tonB1 disruption. When expressed in an E. coli model strain, the TonB1 complex, TonB2 complex, and TonB3 protein from R. anatipestifer cannot energize heterologous hemin transporters. Further, only the TonB1 complex can energize a R. anatipestifer hemin transporter when co-expressed in an E. coli model strain.
doi_str_mv 10.1371/journal.pone.0127506
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1683578108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A432405332</galeid><doaj_id>oai_doaj_org_article_d1a4357e7d454d4d88b16068a5140d8a</doaj_id><sourcerecordid>A432405332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-7dcd05f3e2dfb868a7023e83540faa647e04923409be33e95f45af4ae9315e6c3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0WLHjpPcIJVpsEqTJnUdt5YbH7eeEruzE0T59ThrNjVoFygXiZznfc-Hz0mStwTPCM3Jl1vXeSvr2c5ZmGGS5hnmz5JTUtJ0ylNMnx99nySvQrjFOKMF5y-Tk5RjkvM8PU22K2e_oXMLfrNHKy9tUF3VGmfR9T600ATkNFoaaMBDXUskrWzNDkJrNHg094CWcNcZDwpp59HCR6W0Cl1AYyy6aU1t_sje73XyQss6wJvhPUluvp-vzi6ml1c_Fmfzy2nFy7Sd5qpSONMUUqXXBS9kjlMKBc0Y1lJylgNmZUoZLtdAKZSZZpnUTEJJSQa8opPk_cF3V7sghiYFQXj0yAuCi0gsDoRy8lbsvGmk3wsnjbg_cH4jpG9NVYNQRLIog1yxjCmmimJNOI5ZZYRhVcjo9XWI1q0bUBXY1st6ZDr-Y81WbNwvwRjjNJY2ST4NBt7ddbGvojGh6lttwXX3ebOYAs9xRD_8gz5d3UBtZCzAWO1i3Ko3FXNGUxZngPZhZ09Q8VHx3qo4UdrE85Hg80gQmRZ-txvZhSAW18v_Z69-jtmPR-wWZN1ug6u7fmTCGGQHsPIuBA_6sckEi34hHroh-oUQw0JE2bvjC3oUPWwA_QsmQgUk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683578108</pqid></control><display><type>article</type><title>TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Liao, HeBin ; Cheng, XingJun ; Zhu, DeKang ; Wang, MingShu ; Jia, RenYong ; Chen, Shun ; Chen, XiaoYue ; Biville, Francis ; Liu, MaFeng ; Cheng, AnChun</creator><creatorcontrib>Liao, HeBin ; Cheng, XingJun ; Zhu, DeKang ; Wang, MingShu ; Jia, RenYong ; Chen, Shun ; Chen, XiaoYue ; Biville, Francis ; Liu, MaFeng ; Cheng, AnChun</creatorcontrib><description>Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three TonB proteins responsible for energy transduction. These three tonB genes are present in all the R. anatipestifer genomes sequenced so far. Two of these genes are contained within the exbB-exbD-tonB1 and exbB-exbD-exbD-tonB2 operons. The third, tonB3, forms a monocistronic transcription unit. The inability to recover derivatives deleted for this gene suggests its product is essential for R. anatipestifer growth. Here, we show that deletion of tonB1 had no effect on hemin uptake of R. anatipestifer, though disruption of tonB2 strongly decreases hemin uptake, and disruption of both tonB1 and tonB2 abolishes the transport of exogenously added hemin. The ability of R. anatipestifer to grow on iron-depleted medium is decreased by tonB2 but not tonB1 disruption. When expressed in an E. coli model strain, the TonB1 complex, TonB2 complex, and TonB3 protein from R. anatipestifer cannot energize heterologous hemin transporters. Further, only the TonB1 complex can energize a R. anatipestifer hemin transporter when co-expressed in an E. coli model strain.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0127506</identifier><identifier>PMID: 26017672</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Analysis ; Animal diseases ; Aquatic birds ; Archives &amp; records ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological Transport - drug effects ; Chromosomes ; Disease prevention ; Disruption ; E coli ; Energy Metabolism - drug effects ; Energy transduction ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Gene Knockout Techniques ; Genes ; Genetic aspects ; Genomes ; Genomics ; Gram-negative bacteria ; Hemin ; Infections ; Iron ; Iron - metabolism ; Iron Chelating Agents - pharmacology ; Laboratories ; Membrane Proteins - deficiency ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Meningitis ; Operons ; Pathogens ; Pericarditis ; Proteins ; Riemerella - genetics ; Riemerella - metabolism ; Septicemia ; Sequence Analysis ; Transcription ; Veterinarians ; Veterinary colleges ; Veterinary medicine ; Vibrio cholerae ; Waterfowl</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0127506-e0127506</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Liao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Liao et al 2015 Liao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-7dcd05f3e2dfb868a7023e83540faa647e04923409be33e95f45af4ae9315e6c3</citedby><cites>FETCH-LOGICAL-c692t-7dcd05f3e2dfb868a7023e83540faa647e04923409be33e95f45af4ae9315e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1683578108/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1683578108?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26017672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, HeBin</creatorcontrib><creatorcontrib>Cheng, XingJun</creatorcontrib><creatorcontrib>Zhu, DeKang</creatorcontrib><creatorcontrib>Wang, MingShu</creatorcontrib><creatorcontrib>Jia, RenYong</creatorcontrib><creatorcontrib>Chen, Shun</creatorcontrib><creatorcontrib>Chen, XiaoYue</creatorcontrib><creatorcontrib>Biville, Francis</creatorcontrib><creatorcontrib>Liu, MaFeng</creatorcontrib><creatorcontrib>Cheng, AnChun</creatorcontrib><title>TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three TonB proteins responsible for energy transduction. These three tonB genes are present in all the R. anatipestifer genomes sequenced so far. Two of these genes are contained within the exbB-exbD-tonB1 and exbB-exbD-exbD-tonB2 operons. The third, tonB3, forms a monocistronic transcription unit. The inability to recover derivatives deleted for this gene suggests its product is essential for R. anatipestifer growth. Here, we show that deletion of tonB1 had no effect on hemin uptake of R. anatipestifer, though disruption of tonB2 strongly decreases hemin uptake, and disruption of both tonB1 and tonB2 abolishes the transport of exogenously added hemin. The ability of R. anatipestifer to grow on iron-depleted medium is decreased by tonB2 but not tonB1 disruption. When expressed in an E. coli model strain, the TonB1 complex, TonB2 complex, and TonB3 protein from R. anatipestifer cannot energize heterologous hemin transporters. Further, only the TonB1 complex can energize a R. anatipestifer hemin transporter when co-expressed in an E. coli model strain.</description><subject>Activation</subject><subject>Analysis</subject><subject>Animal diseases</subject><subject>Aquatic birds</subject><subject>Archives &amp; records</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological Transport - drug effects</subject><subject>Chromosomes</subject><subject>Disease prevention</subject><subject>Disruption</subject><subject>E coli</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy transduction</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Gram-negative bacteria</subject><subject>Hemin</subject><subject>Infections</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron Chelating Agents - pharmacology</subject><subject>Laboratories</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Meningitis</subject><subject>Operons</subject><subject>Pathogens</subject><subject>Pericarditis</subject><subject>Proteins</subject><subject>Riemerella - genetics</subject><subject>Riemerella - metabolism</subject><subject>Septicemia</subject><subject>Sequence Analysis</subject><subject>Transcription</subject><subject>Veterinarians</subject><subject>Veterinary colleges</subject><subject>Veterinary medicine</subject><subject>Vibrio cholerae</subject><subject>Waterfowl</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0WLHjpPcIJVpsEqTJnUdt5YbH7eeEruzE0T59ThrNjVoFygXiZznfc-Hz0mStwTPCM3Jl1vXeSvr2c5ZmGGS5hnmz5JTUtJ0ylNMnx99nySvQrjFOKMF5y-Tk5RjkvM8PU22K2e_oXMLfrNHKy9tUF3VGmfR9T600ATkNFoaaMBDXUskrWzNDkJrNHg094CWcNcZDwpp59HCR6W0Cl1AYyy6aU1t_sje73XyQss6wJvhPUluvp-vzi6ml1c_Fmfzy2nFy7Sd5qpSONMUUqXXBS9kjlMKBc0Y1lJylgNmZUoZLtdAKZSZZpnUTEJJSQa8opPk_cF3V7sghiYFQXj0yAuCi0gsDoRy8lbsvGmk3wsnjbg_cH4jpG9NVYNQRLIog1yxjCmmimJNOI5ZZYRhVcjo9XWI1q0bUBXY1st6ZDr-Y81WbNwvwRjjNJY2ST4NBt7ddbGvojGh6lttwXX3ebOYAs9xRD_8gz5d3UBtZCzAWO1i3Ko3FXNGUxZngPZhZ09Q8VHx3qo4UdrE85Hg80gQmRZ-txvZhSAW18v_Z69-jtmPR-wWZN1ug6u7fmTCGGQHsPIuBA_6sckEi34hHroh-oUQw0JE2bvjC3oUPWwA_QsmQgUk</recordid><startdate>20150527</startdate><enddate>20150527</enddate><creator>Liao, HeBin</creator><creator>Cheng, XingJun</creator><creator>Zhu, DeKang</creator><creator>Wang, MingShu</creator><creator>Jia, RenYong</creator><creator>Chen, Shun</creator><creator>Chen, XiaoYue</creator><creator>Biville, Francis</creator><creator>Liu, MaFeng</creator><creator>Cheng, AnChun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150527</creationdate><title>TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization</title><author>Liao, HeBin ; Cheng, XingJun ; Zhu, DeKang ; Wang, MingShu ; Jia, RenYong ; Chen, Shun ; Chen, XiaoYue ; Biville, Francis ; Liu, MaFeng ; Cheng, AnChun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-7dcd05f3e2dfb868a7023e83540faa647e04923409be33e95f45af4ae9315e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation</topic><topic>Analysis</topic><topic>Animal diseases</topic><topic>Aquatic birds</topic><topic>Archives &amp; records</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological Transport - drug effects</topic><topic>Chromosomes</topic><topic>Disease prevention</topic><topic>Disruption</topic><topic>E coli</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy transduction</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Gram-negative bacteria</topic><topic>Hemin</topic><topic>Infections</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron Chelating Agents - pharmacology</topic><topic>Laboratories</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Meningitis</topic><topic>Operons</topic><topic>Pathogens</topic><topic>Pericarditis</topic><topic>Proteins</topic><topic>Riemerella - genetics</topic><topic>Riemerella - metabolism</topic><topic>Septicemia</topic><topic>Sequence Analysis</topic><topic>Transcription</topic><topic>Veterinarians</topic><topic>Veterinary colleges</topic><topic>Veterinary medicine</topic><topic>Vibrio cholerae</topic><topic>Waterfowl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, HeBin</creatorcontrib><creatorcontrib>Cheng, XingJun</creatorcontrib><creatorcontrib>Zhu, DeKang</creatorcontrib><creatorcontrib>Wang, MingShu</creatorcontrib><creatorcontrib>Jia, RenYong</creatorcontrib><creatorcontrib>Chen, Shun</creatorcontrib><creatorcontrib>Chen, XiaoYue</creatorcontrib><creatorcontrib>Biville, Francis</creatorcontrib><creatorcontrib>Liu, MaFeng</creatorcontrib><creatorcontrib>Cheng, AnChun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, HeBin</au><au>Cheng, XingJun</au><au>Zhu, DeKang</au><au>Wang, MingShu</au><au>Jia, RenYong</au><au>Chen, Shun</au><au>Chen, XiaoYue</au><au>Biville, Francis</au><au>Liu, MaFeng</au><au>Cheng, AnChun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-27</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0127506</spage><epage>e0127506</epage><pages>e0127506-e0127506</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three TonB proteins responsible for energy transduction. These three tonB genes are present in all the R. anatipestifer genomes sequenced so far. Two of these genes are contained within the exbB-exbD-tonB1 and exbB-exbD-exbD-tonB2 operons. The third, tonB3, forms a monocistronic transcription unit. The inability to recover derivatives deleted for this gene suggests its product is essential for R. anatipestifer growth. Here, we show that deletion of tonB1 had no effect on hemin uptake of R. anatipestifer, though disruption of tonB2 strongly decreases hemin uptake, and disruption of both tonB1 and tonB2 abolishes the transport of exogenously added hemin. The ability of R. anatipestifer to grow on iron-depleted medium is decreased by tonB2 but not tonB1 disruption. When expressed in an E. coli model strain, the TonB1 complex, TonB2 complex, and TonB3 protein from R. anatipestifer cannot energize heterologous hemin transporters. Further, only the TonB1 complex can energize a R. anatipestifer hemin transporter when co-expressed in an E. coli model strain.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26017672</pmid><doi>10.1371/journal.pone.0127506</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0127506-e0127506
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1683578108
source Publicly Available Content Database; PubMed Central
subjects Activation
Analysis
Animal diseases
Aquatic birds
Archives & records
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biological Transport - drug effects
Chromosomes
Disease prevention
Disruption
E coli
Energy Metabolism - drug effects
Energy transduction
Escherichia coli - genetics
Escherichia coli - growth & development
Gene Knockout Techniques
Genes
Genetic aspects
Genomes
Genomics
Gram-negative bacteria
Hemin
Infections
Iron
Iron - metabolism
Iron Chelating Agents - pharmacology
Laboratories
Membrane Proteins - deficiency
Membrane Proteins - genetics
Membrane Proteins - metabolism
Meningitis
Operons
Pathogens
Pericarditis
Proteins
Riemerella - genetics
Riemerella - metabolism
Septicemia
Sequence Analysis
Transcription
Veterinarians
Veterinary colleges
Veterinary medicine
Vibrio cholerae
Waterfowl
title TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TonB%20Energy%20Transduction%20Systems%20of%20Riemerella%20anatipestifer%20Are%20Required%20for%20Iron%20and%20Hemin%20Utilization&rft.jtitle=PloS%20one&rft.au=Liao,%20HeBin&rft.date=2015-05-27&rft.volume=10&rft.issue=5&rft.spage=e0127506&rft.epage=e0127506&rft.pages=e0127506-e0127506&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0127506&rft_dat=%3Cgale_plos_%3EA432405332%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-7dcd05f3e2dfb868a7023e83540faa647e04923409be33e95f45af4ae9315e6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683578108&rft_id=info:pmid/26017672&rft_galeid=A432405332&rfr_iscdi=true