Loading…

Confidence sharing: an economic strategy for efficient information flows in animal groups

Social animals may share information to obtain a more complete and accurate picture of their surroundings. However, physical constraints on communication limit the flow of information between interacting individuals in a way that can cause an accumulation of errors and deteriorated collective behavi...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2014-10, Vol.10 (10), p.e1003862-e1003862
Main Authors: Korman, Amos, Greenwald, Efrat, Feinerman, Ofer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Social animals may share information to obtain a more complete and accurate picture of their surroundings. However, physical constraints on communication limit the flow of information between interacting individuals in a way that can cause an accumulation of errors and deteriorated collective behaviors. Here, we theoretically study a general model of information sharing within animal groups. We take an algorithmic perspective to identify efficient communication schemes that are, nevertheless, economic in terms of communication, memory and individual internal computation. We present a simple and natural algorithm in which each agent compresses all information it has gathered into a single parameter that represents its confidence in its behavior. Confidence is communicated between agents by means of active signaling. We motivate this model by novel and existing empirical evidences for confidence sharing in animal groups. We rigorously show that this algorithm competes extremely well with the best possible algorithm that operates without any computational constraints. We also show that this algorithm is minimal, in the sense that further reduction in communication may significantly reduce performances. Our proofs rely on the Cramér-Rao bound and on our definition of a Fisher Channel Capacity. We use these concepts to quantify information flows within the group which are then used to obtain lower bounds on collective performance. The abstract nature of our model makes it rigorously solvable and its conclusions highly general. Indeed, our results suggest confidence sharing as a central notion in the context of animal communication.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1003862