Loading…

Proportionality: a valid alternative to correlation for relative data

In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an in...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2015-03, Vol.11 (3), p.e1004075-e1004075
Main Authors: Lovell, David, Pawlowsky-Glahn, Vera, Egozcue, Juan José, Marguerat, Samuel, Bähler, Jürg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c698t-b813075d201895fa475300aead11f0168e46efc1156d4b309b6f979a7b2293383
cites cdi_FETCH-LOGICAL-c698t-b813075d201895fa475300aead11f0168e46efc1156d4b309b6f979a7b2293383
container_end_page e1004075
container_issue 3
container_start_page e1004075
container_title PLoS computational biology
container_volume 11
creator Lovell, David
Pawlowsky-Glahn, Vera
Egozcue, Juan José
Marguerat, Samuel
Bähler, Jürg
description In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.
doi_str_mv 10.1371/journal.pcbi.1004075
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685043809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418603731</galeid><doaj_id>oai_doaj_org_article_330a1dbe2de04778a95ecf6f10e49b2a</doaj_id><sourcerecordid>A418603731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-b813075d201895fa475300aead11f0168e46efc1156d4b309b6f979a7b2293383</originalsourceid><addsrcrecordid>eNqVUk2P0zAQjRCIXRb-AYIc4dBix3Ycc0BarRaotALEx9maOOPiKo2L7VTsv8fZZqvtEUVWxvZ7b-aNpyheUrKkTNJ3Gz-GAfrlzrRuSQnhRIpHxTkVgi0kE83jB_FZ8SzGDSE5VPXT4qwSUgomxHlx_S34nQ_J-azl0u37Esp9jroS-oQ5QXJ7LJMvjQ8Be5iApfWhPGzyXQcJnhdPLPQRX8z_i-LXx-ufV58XN18_ra4ubxamVk1atA1lucquIrRRwgLPRRACCB2lltC6QV6jNZSKuuMtI6qtrZIKZFtVirGGXRSvD7q73kc9dyDqzBSEs4aojFgdEJ2Hjd4Ft4Vwqz04fXfgw1pDdmt61IwRoF2LVYeES9mAEmhsbSlBrtoKstaHOdvYbrEzOKQA_Yno6c3gfuu132vOair5VC49CJg4Gh3QYDCQ7ojHzbQqIitdCc7UZODNnDT4PyPGpLcuGux7GNCPk9eacy5oJTN0eYCuIdtxg_W5CpO_DrfO-AGty-eXnDY1YZLRTHh7QsiYhH_TGsYY9erH9__AfjnF8tln8DEGtMceUaKnYb1_Kj0Nq56HNdNePezvkXQ_newfdG_loQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664445127</pqid></control><display><type>article</type><title>Proportionality: a valid alternative to correlation for relative data</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Lovell, David ; Pawlowsky-Glahn, Vera ; Egozcue, Juan José ; Marguerat, Samuel ; Bähler, Jürg</creator><contributor>Dunbrack Jr, Roland L.</contributor><creatorcontrib>Lovell, David ; Pawlowsky-Glahn, Vera ; Egozcue, Juan José ; Marguerat, Samuel ; Bähler, Jürg ; Dunbrack Jr, Roland L.</creatorcontrib><description>In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004075</identifier><identifier>PMID: 25775355</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Associations ; Computational Biology - methods ; Correlació (Estadística) ; Correlation (Statistics) ; Data analysis ; Expressió gènica ; Gene expression ; Gene Expression Regulation, Fungal - genetics ; Genetic aspects ; Identification and classification ; Life sciences ; Methods ; Models, Genetic ; Models, Statistical ; Mostreig (Estadística) ; Mètodes estadístics ; Probabilitats ; Probabilities ; Research Design ; RNA, Fungal - genetics ; RNA, Messenger - genetics ; Sampling (Statistics) ; Statistical methods ; Studies ; Yeasts (Fungi) ; Yeasts - genetics</subject><ispartof>PLoS computational biology, 2015-03, Vol.11 (3), p.e1004075-e1004075</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>Attribution 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es/"&gt;http://creativecommons.org/licenses/by/3.0/es/&lt;/a&gt;</rights><rights>2015 Lovell et al 2015 Lovell et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J (2015) Proportionality: A Valid Alternative to Correlation for Relative Data. PLoS Comput Biol 11(3): e1004075. doi:10.1371/journal.pcbi.1004075</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-b813075d201895fa475300aead11f0168e46efc1156d4b309b6f979a7b2293383</citedby><cites>FETCH-LOGICAL-c698t-b813075d201895fa475300aead11f0168e46efc1156d4b309b6f979a7b2293383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dunbrack Jr, Roland L.</contributor><creatorcontrib>Lovell, David</creatorcontrib><creatorcontrib>Pawlowsky-Glahn, Vera</creatorcontrib><creatorcontrib>Egozcue, Juan José</creatorcontrib><creatorcontrib>Marguerat, Samuel</creatorcontrib><creatorcontrib>Bähler, Jürg</creatorcontrib><title>Proportionality: a valid alternative to correlation for relative data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.</description><subject>Analysis</subject><subject>Associations</subject><subject>Computational Biology - methods</subject><subject>Correlació (Estadística)</subject><subject>Correlation (Statistics)</subject><subject>Data analysis</subject><subject>Expressió gènica</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal - genetics</subject><subject>Genetic aspects</subject><subject>Identification and classification</subject><subject>Life sciences</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Mostreig (Estadística)</subject><subject>Mètodes estadístics</subject><subject>Probabilitats</subject><subject>Probabilities</subject><subject>Research Design</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Sampling (Statistics)</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Yeasts (Fungi)</subject><subject>Yeasts - genetics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVUk2P0zAQjRCIXRb-AYIc4dBix3Ycc0BarRaotALEx9maOOPiKo2L7VTsv8fZZqvtEUVWxvZ7b-aNpyheUrKkTNJ3Gz-GAfrlzrRuSQnhRIpHxTkVgi0kE83jB_FZ8SzGDSE5VPXT4qwSUgomxHlx_S34nQ_J-azl0u37Esp9jroS-oQ5QXJ7LJMvjQ8Be5iApfWhPGzyXQcJnhdPLPQRX8z_i-LXx-ufV58XN18_ra4ubxamVk1atA1lucquIrRRwgLPRRACCB2lltC6QV6jNZSKuuMtI6qtrZIKZFtVirGGXRSvD7q73kc9dyDqzBSEs4aojFgdEJ2Hjd4Ft4Vwqz04fXfgw1pDdmt61IwRoF2LVYeES9mAEmhsbSlBrtoKstaHOdvYbrEzOKQA_Yno6c3gfuu132vOair5VC49CJg4Gh3QYDCQ7ojHzbQqIitdCc7UZODNnDT4PyPGpLcuGux7GNCPk9eacy5oJTN0eYCuIdtxg_W5CpO_DrfO-AGty-eXnDY1YZLRTHh7QsiYhH_TGsYY9erH9__AfjnF8tln8DEGtMceUaKnYb1_Kj0Nq56HNdNePezvkXQ_newfdG_loQ</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Lovell, David</creator><creator>Pawlowsky-Glahn, Vera</creator><creator>Egozcue, Juan José</creator><creator>Marguerat, Samuel</creator><creator>Bähler, Jürg</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150301</creationdate><title>Proportionality: a valid alternative to correlation for relative data</title><author>Lovell, David ; Pawlowsky-Glahn, Vera ; Egozcue, Juan José ; Marguerat, Samuel ; Bähler, Jürg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-b813075d201895fa475300aead11f0168e46efc1156d4b309b6f979a7b2293383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Associations</topic><topic>Computational Biology - methods</topic><topic>Correlació (Estadística)</topic><topic>Correlation (Statistics)</topic><topic>Data analysis</topic><topic>Expressió gènica</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal - genetics</topic><topic>Genetic aspects</topic><topic>Identification and classification</topic><topic>Life sciences</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Mostreig (Estadística)</topic><topic>Mètodes estadístics</topic><topic>Probabilitats</topic><topic>Probabilities</topic><topic>Research Design</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Sampling (Statistics)</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Yeasts (Fungi)</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lovell, David</creatorcontrib><creatorcontrib>Pawlowsky-Glahn, Vera</creatorcontrib><creatorcontrib>Egozcue, Juan José</creatorcontrib><creatorcontrib>Marguerat, Samuel</creatorcontrib><creatorcontrib>Bähler, Jürg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lovell, David</au><au>Pawlowsky-Glahn, Vera</au><au>Egozcue, Juan José</au><au>Marguerat, Samuel</au><au>Bähler, Jürg</au><au>Dunbrack Jr, Roland L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proportionality: a valid alternative to correlation for relative data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>11</volume><issue>3</issue><spage>e1004075</spage><epage>e1004075</epage><pages>e1004075-e1004075</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25775355</pmid><doi>10.1371/journal.pcbi.1004075</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-03, Vol.11 (3), p.e1004075-e1004075
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1685043809
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Analysis
Associations
Computational Biology - methods
Correlació (Estadística)
Correlation (Statistics)
Data analysis
Expressió gènica
Gene expression
Gene Expression Regulation, Fungal - genetics
Genetic aspects
Identification and classification
Life sciences
Methods
Models, Genetic
Models, Statistical
Mostreig (Estadística)
Mètodes estadístics
Probabilitats
Probabilities
Research Design
RNA, Fungal - genetics
RNA, Messenger - genetics
Sampling (Statistics)
Statistical methods
Studies
Yeasts (Fungi)
Yeasts - genetics
title Proportionality: a valid alternative to correlation for relative data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proportionality:%20a%20valid%20alternative%20to%20correlation%20for%20relative%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Lovell,%20David&rft.date=2015-03-01&rft.volume=11&rft.issue=3&rft.spage=e1004075&rft.epage=e1004075&rft.pages=e1004075-e1004075&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004075&rft_dat=%3Cgale_plos_%3EA418603731%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c698t-b813075d201895fa475300aead11f0168e46efc1156d4b309b6f979a7b2293383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664445127&rft_id=info:pmid/25775355&rft_galeid=A418603731&rfr_iscdi=true