Loading…
Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network
An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the W...
Saved in:
Published in: | PLoS computational biology 2015-05, Vol.11 (5), p.e1004264 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363 |
---|---|
cites | cdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363 |
container_end_page | |
container_issue | 5 |
container_start_page | e1004264 |
container_title | PLoS computational biology |
container_volume | 11 |
creator | Al-Anzi, Bader Arpp, Patrick Gerges, Sherif Ormerod, Christopher Olsman, Noah Zinn, Kai |
description | An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model. |
doi_str_mv | 10.1371/journal.pcbi.1004264 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685052427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418603877</galeid><doaj_id>oai_doaj_org_article_e09c0872ccae4c93b438b6fc701a90e4</doaj_id><sourcerecordid>A418603877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</originalsourceid><addsrcrecordid>eNqVUstuEzEUHSEQLYU_QDBbFgn2-DWzQaqqApEqkHisrTueOxOHiT2ynT4-o39cp0mqZom8sH18zvH18S2K95TMKVP088pvgoNxPpnWzikhvJL8RXFKhWAzxUT98tn6pHgT44qQvGzk6-KkkqQigpLT4v7ydsJg1-gSjCW4rjR-PW0SJOvdIwLjXbSx9H0J5QhhwHIKPqF1pcN048O_Mi0hZZlLwY-x7PMmJh8gMwNeI2QsLbHsMNrBZbF1xk4j7i23IIzWDQe7t8WrPmvw3X4-K_5-vfxz8X129fPb4uL8amYkEWlmGgJNwxlVPasazkEBUdxQVNAb1dWcEgY1CNHUUoiKtEoYbJEKQ6SSTLKz4uPOdxp91Ps0o6ayFkRUvFKZsdgxOg8rnQtfQ7jTHqx-BHwYNIRkzYgaSWNIrSpjALlpWMtZ3cpcCKHQEOTZ68v-tk27xs7kvAOMR6bHJ84u9eCvNedcVQ3NBvOdwQD5Put6n2kmjw7XNoePvc34Oae1JKxW2-o_HQm2H4S3aYBNjHrx-9d_cH8cc_mOa4KPMWD_9AhK9LYzD1nqbWfqfWdm2YfnATyJDq3IHgDXsuOX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Al-Anzi, Bader ; Arpp, Patrick ; Gerges, Sherif ; Ormerod, Christopher ; Olsman, Noah ; Zinn, Kai</creator><contributor>Tucker-Kellogg, Greg</contributor><creatorcontrib>Al-Anzi, Bader ; Arpp, Patrick ; Gerges, Sherif ; Ormerod, Christopher ; Olsman, Noah ; Zinn, Kai ; Tucker-Kellogg, Greg</creatorcontrib><description>An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004264</identifier><identifier>PMID: 26020510</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Cellular signal transduction ; Cluster Analysis ; Computational Biology ; Computer Simulation ; Fatty acid synthesis ; Fatty Acids - chemistry ; Gene Deletion ; Genotype & phenotype ; Identification and classification ; MAP Kinase Signaling System ; Metabolism ; Models, Genetic ; Models, Theoretical ; Morphology ; Mutation ; Phenotype ; Physiology ; Principles ; Proteins ; Proteins - chemistry ; Proteome ; Reproducibility of Results ; Saccharomyces cerevisiae - chemistry ; Sirolimus - chemistry ; Software ; Systems Biology</subject><ispartof>PLoS computational biology, 2015-05, Vol.11 (5), p.e1004264</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Al-Anzi et al 2015 Al-Anzi et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Al-Anzi B, Arpp P, Gerges S, Ormerod C, Olsman N, Zinn K (2015) Experimental and Computational Analysis of a Large Protein Network That Controls Fat Storage Reveals the Design Principles of a Signaling Network. PLoS Comput Biol 11(5): e1004264. doi:10.1371/journal.pcbi.1004264</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</citedby><cites>FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447291/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447291/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26020510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tucker-Kellogg, Greg</contributor><creatorcontrib>Al-Anzi, Bader</creatorcontrib><creatorcontrib>Arpp, Patrick</creatorcontrib><creatorcontrib>Gerges, Sherif</creatorcontrib><creatorcontrib>Ormerod, Christopher</creatorcontrib><creatorcontrib>Olsman, Noah</creatorcontrib><creatorcontrib>Zinn, Kai</creatorcontrib><title>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.</description><subject>Algorithms</subject><subject>Cellular signal transduction</subject><subject>Cluster Analysis</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Fatty acid synthesis</subject><subject>Fatty Acids - chemistry</subject><subject>Gene Deletion</subject><subject>Genotype & phenotype</subject><subject>Identification and classification</subject><subject>MAP Kinase Signaling System</subject><subject>Metabolism</subject><subject>Models, Genetic</subject><subject>Models, Theoretical</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Physiology</subject><subject>Principles</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteome</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Sirolimus - chemistry</subject><subject>Software</subject><subject>Systems Biology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVUstuEzEUHSEQLYU_QDBbFgn2-DWzQaqqApEqkHisrTueOxOHiT2ynT4-o39cp0mqZom8sH18zvH18S2K95TMKVP088pvgoNxPpnWzikhvJL8RXFKhWAzxUT98tn6pHgT44qQvGzk6-KkkqQigpLT4v7ydsJg1-gSjCW4rjR-PW0SJOvdIwLjXbSx9H0J5QhhwHIKPqF1pcN048O_Mi0hZZlLwY-x7PMmJh8gMwNeI2QsLbHsMNrBZbF1xk4j7i23IIzWDQe7t8WrPmvw3X4-K_5-vfxz8X129fPb4uL8amYkEWlmGgJNwxlVPasazkEBUdxQVNAb1dWcEgY1CNHUUoiKtEoYbJEKQ6SSTLKz4uPOdxp91Ps0o6ayFkRUvFKZsdgxOg8rnQtfQ7jTHqx-BHwYNIRkzYgaSWNIrSpjALlpWMtZ3cpcCKHQEOTZ68v-tk27xs7kvAOMR6bHJ84u9eCvNedcVQ3NBvOdwQD5Put6n2kmjw7XNoePvc34Oae1JKxW2-o_HQm2H4S3aYBNjHrx-9d_cH8cc_mOa4KPMWD_9AhK9LYzD1nqbWfqfWdm2YfnATyJDq3IHgDXsuOX</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Al-Anzi, Bader</creator><creator>Arpp, Patrick</creator><creator>Gerges, Sherif</creator><creator>Ormerod, Christopher</creator><creator>Olsman, Noah</creator><creator>Zinn, Kai</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150501</creationdate><title>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</title><author>Al-Anzi, Bader ; Arpp, Patrick ; Gerges, Sherif ; Ormerod, Christopher ; Olsman, Noah ; Zinn, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Cellular signal transduction</topic><topic>Cluster Analysis</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Fatty acid synthesis</topic><topic>Fatty Acids - chemistry</topic><topic>Gene Deletion</topic><topic>Genotype & phenotype</topic><topic>Identification and classification</topic><topic>MAP Kinase Signaling System</topic><topic>Metabolism</topic><topic>Models, Genetic</topic><topic>Models, Theoretical</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Physiology</topic><topic>Principles</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteome</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Sirolimus - chemistry</topic><topic>Software</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Anzi, Bader</creatorcontrib><creatorcontrib>Arpp, Patrick</creatorcontrib><creatorcontrib>Gerges, Sherif</creatorcontrib><creatorcontrib>Ormerod, Christopher</creatorcontrib><creatorcontrib>Olsman, Noah</creatorcontrib><creatorcontrib>Zinn, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Anzi, Bader</au><au>Arpp, Patrick</au><au>Gerges, Sherif</au><au>Ormerod, Christopher</au><au>Olsman, Noah</au><au>Zinn, Kai</au><au>Tucker-Kellogg, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>11</volume><issue>5</issue><spage>e1004264</spage><pages>e1004264-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26020510</pmid><doi>10.1371/journal.pcbi.1004264</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2015-05, Vol.11 (5), p.e1004264 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1685052427 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Cellular signal transduction Cluster Analysis Computational Biology Computer Simulation Fatty acid synthesis Fatty Acids - chemistry Gene Deletion Genotype & phenotype Identification and classification MAP Kinase Signaling System Metabolism Models, Genetic Models, Theoretical Morphology Mutation Phenotype Physiology Principles Proteins Proteins - chemistry Proteome Reproducibility of Results Saccharomyces cerevisiae - chemistry Sirolimus - chemistry Software Systems Biology |
title | Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20analysis%20of%20a%20large%20protein%20network%20that%20controls%20fat%20storage%20reveals%20the%20design%20principles%20of%20a%20signaling%20network&rft.jtitle=PLoS%20computational%20biology&rft.au=Al-Anzi,%20Bader&rft.date=2015-05-01&rft.volume=11&rft.issue=5&rft.spage=e1004264&rft.pages=e1004264-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004264&rft_dat=%3Cgale_plos_%3EA418603877%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26020510&rft_galeid=A418603877&rfr_iscdi=true |