Loading…

Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network

An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the W...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2015-05, Vol.11 (5), p.e1004264
Main Authors: Al-Anzi, Bader, Arpp, Patrick, Gerges, Sherif, Ormerod, Christopher, Olsman, Noah, Zinn, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363
cites cdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363
container_end_page
container_issue 5
container_start_page e1004264
container_title PLoS computational biology
container_volume 11
creator Al-Anzi, Bader
Arpp, Patrick
Gerges, Sherif
Ormerod, Christopher
Olsman, Noah
Zinn, Kai
description An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.
doi_str_mv 10.1371/journal.pcbi.1004264
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685052427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418603877</galeid><doaj_id>oai_doaj_org_article_e09c0872ccae4c93b438b6fc701a90e4</doaj_id><sourcerecordid>A418603877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</originalsourceid><addsrcrecordid>eNqVUstuEzEUHSEQLYU_QDBbFgn2-DWzQaqqApEqkHisrTueOxOHiT2ynT4-o39cp0mqZom8sH18zvH18S2K95TMKVP088pvgoNxPpnWzikhvJL8RXFKhWAzxUT98tn6pHgT44qQvGzk6-KkkqQigpLT4v7ydsJg1-gSjCW4rjR-PW0SJOvdIwLjXbSx9H0J5QhhwHIKPqF1pcN048O_Mi0hZZlLwY-x7PMmJh8gMwNeI2QsLbHsMNrBZbF1xk4j7i23IIzWDQe7t8WrPmvw3X4-K_5-vfxz8X129fPb4uL8amYkEWlmGgJNwxlVPasazkEBUdxQVNAb1dWcEgY1CNHUUoiKtEoYbJEKQ6SSTLKz4uPOdxp91Ps0o6ayFkRUvFKZsdgxOg8rnQtfQ7jTHqx-BHwYNIRkzYgaSWNIrSpjALlpWMtZ3cpcCKHQEOTZ68v-tk27xs7kvAOMR6bHJ84u9eCvNedcVQ3NBvOdwQD5Put6n2kmjw7XNoePvc34Oae1JKxW2-o_HQm2H4S3aYBNjHrx-9d_cH8cc_mOa4KPMWD_9AhK9LYzD1nqbWfqfWdm2YfnATyJDq3IHgDXsuOX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Al-Anzi, Bader ; Arpp, Patrick ; Gerges, Sherif ; Ormerod, Christopher ; Olsman, Noah ; Zinn, Kai</creator><contributor>Tucker-Kellogg, Greg</contributor><creatorcontrib>Al-Anzi, Bader ; Arpp, Patrick ; Gerges, Sherif ; Ormerod, Christopher ; Olsman, Noah ; Zinn, Kai ; Tucker-Kellogg, Greg</creatorcontrib><description>An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004264</identifier><identifier>PMID: 26020510</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Cellular signal transduction ; Cluster Analysis ; Computational Biology ; Computer Simulation ; Fatty acid synthesis ; Fatty Acids - chemistry ; Gene Deletion ; Genotype &amp; phenotype ; Identification and classification ; MAP Kinase Signaling System ; Metabolism ; Models, Genetic ; Models, Theoretical ; Morphology ; Mutation ; Phenotype ; Physiology ; Principles ; Proteins ; Proteins - chemistry ; Proteome ; Reproducibility of Results ; Saccharomyces cerevisiae - chemistry ; Sirolimus - chemistry ; Software ; Systems Biology</subject><ispartof>PLoS computational biology, 2015-05, Vol.11 (5), p.e1004264</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Al-Anzi et al 2015 Al-Anzi et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Al-Anzi B, Arpp P, Gerges S, Ormerod C, Olsman N, Zinn K (2015) Experimental and Computational Analysis of a Large Protein Network That Controls Fat Storage Reveals the Design Principles of a Signaling Network. PLoS Comput Biol 11(5): e1004264. doi:10.1371/journal.pcbi.1004264</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</citedby><cites>FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447291/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447291/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26020510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tucker-Kellogg, Greg</contributor><creatorcontrib>Al-Anzi, Bader</creatorcontrib><creatorcontrib>Arpp, Patrick</creatorcontrib><creatorcontrib>Gerges, Sherif</creatorcontrib><creatorcontrib>Ormerod, Christopher</creatorcontrib><creatorcontrib>Olsman, Noah</creatorcontrib><creatorcontrib>Zinn, Kai</creatorcontrib><title>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.</description><subject>Algorithms</subject><subject>Cellular signal transduction</subject><subject>Cluster Analysis</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Fatty acid synthesis</subject><subject>Fatty Acids - chemistry</subject><subject>Gene Deletion</subject><subject>Genotype &amp; phenotype</subject><subject>Identification and classification</subject><subject>MAP Kinase Signaling System</subject><subject>Metabolism</subject><subject>Models, Genetic</subject><subject>Models, Theoretical</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Physiology</subject><subject>Principles</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteome</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Sirolimus - chemistry</subject><subject>Software</subject><subject>Systems Biology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVUstuEzEUHSEQLYU_QDBbFgn2-DWzQaqqApEqkHisrTueOxOHiT2ynT4-o39cp0mqZom8sH18zvH18S2K95TMKVP088pvgoNxPpnWzikhvJL8RXFKhWAzxUT98tn6pHgT44qQvGzk6-KkkqQigpLT4v7ydsJg1-gSjCW4rjR-PW0SJOvdIwLjXbSx9H0J5QhhwHIKPqF1pcN048O_Mi0hZZlLwY-x7PMmJh8gMwNeI2QsLbHsMNrBZbF1xk4j7i23IIzWDQe7t8WrPmvw3X4-K_5-vfxz8X129fPb4uL8amYkEWlmGgJNwxlVPasazkEBUdxQVNAb1dWcEgY1CNHUUoiKtEoYbJEKQ6SSTLKz4uPOdxp91Ps0o6ayFkRUvFKZsdgxOg8rnQtfQ7jTHqx-BHwYNIRkzYgaSWNIrSpjALlpWMtZ3cpcCKHQEOTZ68v-tk27xs7kvAOMR6bHJ84u9eCvNedcVQ3NBvOdwQD5Put6n2kmjw7XNoePvc34Oae1JKxW2-o_HQm2H4S3aYBNjHrx-9d_cH8cc_mOa4KPMWD_9AhK9LYzD1nqbWfqfWdm2YfnATyJDq3IHgDXsuOX</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Al-Anzi, Bader</creator><creator>Arpp, Patrick</creator><creator>Gerges, Sherif</creator><creator>Ormerod, Christopher</creator><creator>Olsman, Noah</creator><creator>Zinn, Kai</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150501</creationdate><title>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</title><author>Al-Anzi, Bader ; Arpp, Patrick ; Gerges, Sherif ; Ormerod, Christopher ; Olsman, Noah ; Zinn, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Cellular signal transduction</topic><topic>Cluster Analysis</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Fatty acid synthesis</topic><topic>Fatty Acids - chemistry</topic><topic>Gene Deletion</topic><topic>Genotype &amp; phenotype</topic><topic>Identification and classification</topic><topic>MAP Kinase Signaling System</topic><topic>Metabolism</topic><topic>Models, Genetic</topic><topic>Models, Theoretical</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Physiology</topic><topic>Principles</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteome</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Sirolimus - chemistry</topic><topic>Software</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Anzi, Bader</creatorcontrib><creatorcontrib>Arpp, Patrick</creatorcontrib><creatorcontrib>Gerges, Sherif</creatorcontrib><creatorcontrib>Ormerod, Christopher</creatorcontrib><creatorcontrib>Olsman, Noah</creatorcontrib><creatorcontrib>Zinn, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Anzi, Bader</au><au>Arpp, Patrick</au><au>Gerges, Sherif</au><au>Ormerod, Christopher</au><au>Olsman, Noah</au><au>Zinn, Kai</au><au>Tucker-Kellogg, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>11</volume><issue>5</issue><spage>e1004264</spage><pages>e1004264-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26020510</pmid><doi>10.1371/journal.pcbi.1004264</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-05, Vol.11 (5), p.e1004264
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1685052427
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Cellular signal transduction
Cluster Analysis
Computational Biology
Computer Simulation
Fatty acid synthesis
Fatty Acids - chemistry
Gene Deletion
Genotype & phenotype
Identification and classification
MAP Kinase Signaling System
Metabolism
Models, Genetic
Models, Theoretical
Morphology
Mutation
Phenotype
Physiology
Principles
Proteins
Proteins - chemistry
Proteome
Reproducibility of Results
Saccharomyces cerevisiae - chemistry
Sirolimus - chemistry
Software
Systems Biology
title Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20analysis%20of%20a%20large%20protein%20network%20that%20controls%20fat%20storage%20reveals%20the%20design%20principles%20of%20a%20signaling%20network&rft.jtitle=PLoS%20computational%20biology&rft.au=Al-Anzi,%20Bader&rft.date=2015-05-01&rft.volume=11&rft.issue=5&rft.spage=e1004264&rft.pages=e1004264-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004264&rft_dat=%3Cgale_plos_%3EA418603877%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-c90a994317f32944a7a074c1e7afc7d84103a8a559865520b75cebe15c0676363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26020510&rft_galeid=A418603877&rfr_iscdi=true