Loading…

Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum

The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Scler...

Full description

Saved in:
Bibliographic Details
Published in:PLoS pathogens 2015-05, Vol.11 (5), p.e1004878-e1004878
Main Authors: Zhou, Jun, Zeng, Lizhang, Liu, Jian, Xing, Da
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3
cites cdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3
container_end_page e1004878
container_issue 5
container_start_page e1004878
container_title PLoS pathogens
container_volume 11
creator Zhou, Jun
Zeng, Lizhang
Liu, Jian
Xing, Da
description The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.
doi_str_mv 10.1371/journal.ppat.1004878
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685376092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418465471</galeid><doaj_id>oai_doaj_org_article_07ba175981ce49ab891289d39f7a4351</doaj_id><sourcerecordid>A418465471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</originalsourceid><addsrcrecordid>eNqVkk2P0zAQhiMEYpeFf4AgEhc4tNixE9sXpFXFR6XlQxQkbmbi2K0rNw62g-i_x91mV1uJC_LBo5lnXo9eT1E8xWiOCcOvt34MPbj5MECaY4QoZ_xecY7rmswYYfT-nfiseBTjNjOY4OZhcVbVQhBc8fPi50fo7TA6SNb3pTdl2ujyB_Rp44fN3rlysVdOl8teBQ1Rx_KLy8VyNUalh2Rb62zal8mXq4wFn2xvoYxT7MO4e1w8MOCifjLdF8X3d2-_LT7Mrj6_Xy4ur2aqESLNWkEr1BKuKhBEc9xwYkhlcFcDMxVDoDsQBrWdQqhqcUuQVhVFivCmqzE15KJ4ftQdnI9yMifKLFQT1iBRZWJ5JDoPWzkEu4Owlx6svE74sJYQks2zS8RawKwWHCtNBbRcZLNER4RhQEmNs9ab6bWx3elO6T4FcCeip5XebuTa_5aUEoGYyAIvJ4Hgf406Jrmz2VKX3dV-vJ674rzBjGb0xRFdQx7N9sZnRXXA5SXFnDY1ZYeJ5v-g8un0zirfa2Nz_qTh1UlDZpL-k9YwxiiXq6__wX46ZemRVcHHGLS5dQUjedjcm8-Rh82V0-bmtmd3Hb1tullV8hf7z-sW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682886174</pqid></control><display><type>article</type><title>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhou, Jun ; Zeng, Lizhang ; Liu, Jian ; Xing, Da</creator><contributor>van Kan, Jan</contributor><creatorcontrib>Zhou, Jun ; Zeng, Lizhang ; Liu, Jian ; Xing, Da ; van Kan, Jan</creatorcontrib><description>The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1004878</identifier><identifier>PMID: 25993128</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Arabidopsis - drug effects ; Arabidopsis - immunology ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Ascomycota - drug effects ; Ascomycota - immunology ; Ascomycota - physiology ; Biosynthesis ; Cell cycle ; Chlorophyll ; Crop diseases ; Disease susceptibility ; Gene expression ; Glucans - metabolism ; Health aspects ; Host-Pathogen Interactions - drug effects ; Hydrogen-Ion Concentration ; Identification and classification ; Infections ; Leaves ; Light ; Mutation ; Oxalates - metabolism ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Pathogenesis ; Pathogenic fungi ; Photosynthesis ; Photosynthesis - drug effects ; Plant Immunity - drug effects ; Plant Leaves - drug effects ; Plant Leaves - immunology ; Plant Leaves - metabolism ; Plant Leaves - microbiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant-pathogen relationships ; Plants, Genetically Modified - drug effects ; Plants, Genetically Modified - immunology ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - microbiology ; R&amp;D ; Reactive Oxygen Species - metabolism ; Reducing Agents - pharmacology ; Research &amp; development ; Software ; Studies ; Thylakoids - drug effects ; Thylakoids - metabolism ; Xanthophyll ; Xanthophylls - metabolism ; Zeaxanthins - metabolism</subject><ispartof>PLoS pathogens, 2015-05, Vol.11 (5), p.e1004878-e1004878</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Zhou et al 2015 Zhou et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Pathog 11(5): e1004878. doi:10.1371/journal.ppat.1004878</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</citedby><cites>FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25993128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>van Kan, Jan</contributor><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Zeng, Lizhang</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xing, Da</creatorcontrib><title>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Ascomycota - drug effects</subject><subject>Ascomycota - immunology</subject><subject>Ascomycota - physiology</subject><subject>Biosynthesis</subject><subject>Cell cycle</subject><subject>Chlorophyll</subject><subject>Crop diseases</subject><subject>Disease susceptibility</subject><subject>Gene expression</subject><subject>Glucans - metabolism</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions - drug effects</subject><subject>Hydrogen-Ion Concentration</subject><subject>Identification and classification</subject><subject>Infections</subject><subject>Leaves</subject><subject>Light</subject><subject>Mutation</subject><subject>Oxalates - metabolism</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Pathogenesis</subject><subject>Pathogenic fungi</subject><subject>Photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Plant Immunity - drug effects</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - immunology</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - microbiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant-pathogen relationships</subject><subject>Plants, Genetically Modified - drug effects</subject><subject>Plants, Genetically Modified - immunology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>R&amp;D</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reducing Agents - pharmacology</subject><subject>Research &amp; development</subject><subject>Software</subject><subject>Studies</subject><subject>Thylakoids - drug effects</subject><subject>Thylakoids - metabolism</subject><subject>Xanthophyll</subject><subject>Xanthophylls - metabolism</subject><subject>Zeaxanthins - metabolism</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkk2P0zAQhiMEYpeFf4AgEhc4tNixE9sXpFXFR6XlQxQkbmbi2K0rNw62g-i_x91mV1uJC_LBo5lnXo9eT1E8xWiOCcOvt34MPbj5MECaY4QoZ_xecY7rmswYYfT-nfiseBTjNjOY4OZhcVbVQhBc8fPi50fo7TA6SNb3pTdl2ujyB_Rp44fN3rlysVdOl8teBQ1Rx_KLy8VyNUalh2Rb62zal8mXq4wFn2xvoYxT7MO4e1w8MOCifjLdF8X3d2-_LT7Mrj6_Xy4ur2aqESLNWkEr1BKuKhBEc9xwYkhlcFcDMxVDoDsQBrWdQqhqcUuQVhVFivCmqzE15KJ4ftQdnI9yMifKLFQT1iBRZWJ5JDoPWzkEu4Owlx6svE74sJYQks2zS8RawKwWHCtNBbRcZLNER4RhQEmNs9ab6bWx3elO6T4FcCeip5XebuTa_5aUEoGYyAIvJ4Hgf406Jrmz2VKX3dV-vJ674rzBjGb0xRFdQx7N9sZnRXXA5SXFnDY1ZYeJ5v-g8un0zirfa2Nz_qTh1UlDZpL-k9YwxiiXq6__wX46ZemRVcHHGLS5dQUjedjcm8-Rh82V0-bmtmd3Hb1tullV8hf7z-sW</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Zhou, Jun</creator><creator>Zeng, Lizhang</creator><creator>Liu, Jian</creator><creator>Xing, Da</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150501</creationdate><title>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</title><author>Zhou, Jun ; Zeng, Lizhang ; Liu, Jian ; Xing, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Ascomycota - drug effects</topic><topic>Ascomycota - immunology</topic><topic>Ascomycota - physiology</topic><topic>Biosynthesis</topic><topic>Cell cycle</topic><topic>Chlorophyll</topic><topic>Crop diseases</topic><topic>Disease susceptibility</topic><topic>Gene expression</topic><topic>Glucans - metabolism</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions - drug effects</topic><topic>Hydrogen-Ion Concentration</topic><topic>Identification and classification</topic><topic>Infections</topic><topic>Leaves</topic><topic>Light</topic><topic>Mutation</topic><topic>Oxalates - metabolism</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Pathogenesis</topic><topic>Pathogenic fungi</topic><topic>Photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Plant Immunity - drug effects</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - immunology</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - microbiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant-pathogen relationships</topic><topic>Plants, Genetically Modified - drug effects</topic><topic>Plants, Genetically Modified - immunology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>R&amp;D</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reducing Agents - pharmacology</topic><topic>Research &amp; development</topic><topic>Software</topic><topic>Studies</topic><topic>Thylakoids - drug effects</topic><topic>Thylakoids - metabolism</topic><topic>Xanthophyll</topic><topic>Xanthophylls - metabolism</topic><topic>Zeaxanthins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Zeng, Lizhang</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xing, Da</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jun</au><au>Zeng, Lizhang</au><au>Liu, Jian</au><au>Xing, Da</au><au>van Kan, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>11</volume><issue>5</issue><spage>e1004878</spage><epage>e1004878</epage><pages>e1004878-e1004878</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25993128</pmid><doi>10.1371/journal.ppat.1004878</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2015-05, Vol.11 (5), p.e1004878-e1004878
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1685376092
source Publicly Available Content Database; PubMed Central
subjects Abscisic acid
Abscisic Acid - metabolism
Arabidopsis - drug effects
Arabidopsis - immunology
Arabidopsis - metabolism
Arabidopsis - microbiology
Ascomycota - drug effects
Ascomycota - immunology
Ascomycota - physiology
Biosynthesis
Cell cycle
Chlorophyll
Crop diseases
Disease susceptibility
Gene expression
Glucans - metabolism
Health aspects
Host-Pathogen Interactions - drug effects
Hydrogen-Ion Concentration
Identification and classification
Infections
Leaves
Light
Mutation
Oxalates - metabolism
Oxidoreductases - genetics
Oxidoreductases - metabolism
Pathogenesis
Pathogenic fungi
Photosynthesis
Photosynthesis - drug effects
Plant Immunity - drug effects
Plant Leaves - drug effects
Plant Leaves - immunology
Plant Leaves - metabolism
Plant Leaves - microbiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant-pathogen relationships
Plants, Genetically Modified - drug effects
Plants, Genetically Modified - immunology
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - microbiology
R&D
Reactive Oxygen Species - metabolism
Reducing Agents - pharmacology
Research & development
Software
Studies
Thylakoids - drug effects
Thylakoids - metabolism
Xanthophyll
Xanthophylls - metabolism
Zeaxanthins - metabolism
title Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20of%20the%20Xanthophyll%20Cycle%20Increases%20Plant%20Susceptibility%20to%20Sclerotinia%20sclerotiorum&rft.jtitle=PLoS%20pathogens&rft.au=Zhou,%20Jun&rft.date=2015-05-01&rft.volume=11&rft.issue=5&rft.spage=e1004878&rft.epage=e1004878&rft.pages=e1004878-e1004878&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1004878&rft_dat=%3Cgale_plos_%3EA418465471%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1682886174&rft_id=info:pmid/25993128&rft_galeid=A418465471&rfr_iscdi=true