Loading…
Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum
The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Scler...
Saved in:
Published in: | PLoS pathogens 2015-05, Vol.11 (5), p.e1004878-e1004878 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3 |
container_end_page | e1004878 |
container_issue | 5 |
container_start_page | e1004878 |
container_title | PLoS pathogens |
container_volume | 11 |
creator | Zhou, Jun Zeng, Lizhang Liu, Jian Xing, Da |
description | The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites. |
doi_str_mv | 10.1371/journal.ppat.1004878 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685376092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418465471</galeid><doaj_id>oai_doaj_org_article_07ba175981ce49ab891289d39f7a4351</doaj_id><sourcerecordid>A418465471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</originalsourceid><addsrcrecordid>eNqVkk2P0zAQhiMEYpeFf4AgEhc4tNixE9sXpFXFR6XlQxQkbmbi2K0rNw62g-i_x91mV1uJC_LBo5lnXo9eT1E8xWiOCcOvt34MPbj5MECaY4QoZ_xecY7rmswYYfT-nfiseBTjNjOY4OZhcVbVQhBc8fPi50fo7TA6SNb3pTdl2ujyB_Rp44fN3rlysVdOl8teBQ1Rx_KLy8VyNUalh2Rb62zal8mXq4wFn2xvoYxT7MO4e1w8MOCifjLdF8X3d2-_LT7Mrj6_Xy4ur2aqESLNWkEr1BKuKhBEc9xwYkhlcFcDMxVDoDsQBrWdQqhqcUuQVhVFivCmqzE15KJ4ftQdnI9yMifKLFQT1iBRZWJ5JDoPWzkEu4Owlx6svE74sJYQks2zS8RawKwWHCtNBbRcZLNER4RhQEmNs9ab6bWx3elO6T4FcCeip5XebuTa_5aUEoGYyAIvJ4Hgf406Jrmz2VKX3dV-vJ674rzBjGb0xRFdQx7N9sZnRXXA5SXFnDY1ZYeJ5v-g8un0zirfa2Nz_qTh1UlDZpL-k9YwxiiXq6__wX46ZemRVcHHGLS5dQUjedjcm8-Rh82V0-bmtmd3Hb1tullV8hf7z-sW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682886174</pqid></control><display><type>article</type><title>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhou, Jun ; Zeng, Lizhang ; Liu, Jian ; Xing, Da</creator><contributor>van Kan, Jan</contributor><creatorcontrib>Zhou, Jun ; Zeng, Lizhang ; Liu, Jian ; Xing, Da ; van Kan, Jan</creatorcontrib><description>The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1004878</identifier><identifier>PMID: 25993128</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Arabidopsis - drug effects ; Arabidopsis - immunology ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Ascomycota - drug effects ; Ascomycota - immunology ; Ascomycota - physiology ; Biosynthesis ; Cell cycle ; Chlorophyll ; Crop diseases ; Disease susceptibility ; Gene expression ; Glucans - metabolism ; Health aspects ; Host-Pathogen Interactions - drug effects ; Hydrogen-Ion Concentration ; Identification and classification ; Infections ; Leaves ; Light ; Mutation ; Oxalates - metabolism ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Pathogenesis ; Pathogenic fungi ; Photosynthesis ; Photosynthesis - drug effects ; Plant Immunity - drug effects ; Plant Leaves - drug effects ; Plant Leaves - immunology ; Plant Leaves - metabolism ; Plant Leaves - microbiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant-pathogen relationships ; Plants, Genetically Modified - drug effects ; Plants, Genetically Modified - immunology ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - microbiology ; R&D ; Reactive Oxygen Species - metabolism ; Reducing Agents - pharmacology ; Research & development ; Software ; Studies ; Thylakoids - drug effects ; Thylakoids - metabolism ; Xanthophyll ; Xanthophylls - metabolism ; Zeaxanthins - metabolism</subject><ispartof>PLoS pathogens, 2015-05, Vol.11 (5), p.e1004878-e1004878</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Zhou et al 2015 Zhou et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Pathog 11(5): e1004878. doi:10.1371/journal.ppat.1004878</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</citedby><cites>FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25993128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>van Kan, Jan</contributor><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Zeng, Lizhang</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xing, Da</creatorcontrib><title>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Ascomycota - drug effects</subject><subject>Ascomycota - immunology</subject><subject>Ascomycota - physiology</subject><subject>Biosynthesis</subject><subject>Cell cycle</subject><subject>Chlorophyll</subject><subject>Crop diseases</subject><subject>Disease susceptibility</subject><subject>Gene expression</subject><subject>Glucans - metabolism</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions - drug effects</subject><subject>Hydrogen-Ion Concentration</subject><subject>Identification and classification</subject><subject>Infections</subject><subject>Leaves</subject><subject>Light</subject><subject>Mutation</subject><subject>Oxalates - metabolism</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Pathogenesis</subject><subject>Pathogenic fungi</subject><subject>Photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Plant Immunity - drug effects</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - immunology</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - microbiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant-pathogen relationships</subject><subject>Plants, Genetically Modified - drug effects</subject><subject>Plants, Genetically Modified - immunology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>R&D</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reducing Agents - pharmacology</subject><subject>Research & development</subject><subject>Software</subject><subject>Studies</subject><subject>Thylakoids - drug effects</subject><subject>Thylakoids - metabolism</subject><subject>Xanthophyll</subject><subject>Xanthophylls - metabolism</subject><subject>Zeaxanthins - metabolism</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkk2P0zAQhiMEYpeFf4AgEhc4tNixE9sXpFXFR6XlQxQkbmbi2K0rNw62g-i_x91mV1uJC_LBo5lnXo9eT1E8xWiOCcOvt34MPbj5MECaY4QoZ_xecY7rmswYYfT-nfiseBTjNjOY4OZhcVbVQhBc8fPi50fo7TA6SNb3pTdl2ujyB_Rp44fN3rlysVdOl8teBQ1Rx_KLy8VyNUalh2Rb62zal8mXq4wFn2xvoYxT7MO4e1w8MOCifjLdF8X3d2-_LT7Mrj6_Xy4ur2aqESLNWkEr1BKuKhBEc9xwYkhlcFcDMxVDoDsQBrWdQqhqcUuQVhVFivCmqzE15KJ4ftQdnI9yMifKLFQT1iBRZWJ5JDoPWzkEu4Owlx6svE74sJYQks2zS8RawKwWHCtNBbRcZLNER4RhQEmNs9ab6bWx3elO6T4FcCeip5XebuTa_5aUEoGYyAIvJ4Hgf406Jrmz2VKX3dV-vJ674rzBjGb0xRFdQx7N9sZnRXXA5SXFnDY1ZYeJ5v-g8un0zirfa2Nz_qTh1UlDZpL-k9YwxiiXq6__wX46ZemRVcHHGLS5dQUjedjcm8-Rh82V0-bmtmd3Hb1tullV8hf7z-sW</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Zhou, Jun</creator><creator>Zeng, Lizhang</creator><creator>Liu, Jian</creator><creator>Xing, Da</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150501</creationdate><title>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</title><author>Zhou, Jun ; Zeng, Lizhang ; Liu, Jian ; Xing, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Ascomycota - drug effects</topic><topic>Ascomycota - immunology</topic><topic>Ascomycota - physiology</topic><topic>Biosynthesis</topic><topic>Cell cycle</topic><topic>Chlorophyll</topic><topic>Crop diseases</topic><topic>Disease susceptibility</topic><topic>Gene expression</topic><topic>Glucans - metabolism</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions - drug effects</topic><topic>Hydrogen-Ion Concentration</topic><topic>Identification and classification</topic><topic>Infections</topic><topic>Leaves</topic><topic>Light</topic><topic>Mutation</topic><topic>Oxalates - metabolism</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Pathogenesis</topic><topic>Pathogenic fungi</topic><topic>Photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Plant Immunity - drug effects</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - immunology</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - microbiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant-pathogen relationships</topic><topic>Plants, Genetically Modified - drug effects</topic><topic>Plants, Genetically Modified - immunology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>R&D</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reducing Agents - pharmacology</topic><topic>Research & development</topic><topic>Software</topic><topic>Studies</topic><topic>Thylakoids - drug effects</topic><topic>Thylakoids - metabolism</topic><topic>Xanthophyll</topic><topic>Xanthophylls - metabolism</topic><topic>Zeaxanthins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Zeng, Lizhang</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xing, Da</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jun</au><au>Zeng, Lizhang</au><au>Liu, Jian</au><au>Xing, Da</au><au>van Kan, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>11</volume><issue>5</issue><spage>e1004878</spage><epage>e1004878</epage><pages>e1004878-e1004878</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25993128</pmid><doi>10.1371/journal.ppat.1004878</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2015-05, Vol.11 (5), p.e1004878-e1004878 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1685376092 |
source | Publicly Available Content Database; PubMed Central |
subjects | Abscisic acid Abscisic Acid - metabolism Arabidopsis - drug effects Arabidopsis - immunology Arabidopsis - metabolism Arabidopsis - microbiology Ascomycota - drug effects Ascomycota - immunology Ascomycota - physiology Biosynthesis Cell cycle Chlorophyll Crop diseases Disease susceptibility Gene expression Glucans - metabolism Health aspects Host-Pathogen Interactions - drug effects Hydrogen-Ion Concentration Identification and classification Infections Leaves Light Mutation Oxalates - metabolism Oxidoreductases - genetics Oxidoreductases - metabolism Pathogenesis Pathogenic fungi Photosynthesis Photosynthesis - drug effects Plant Immunity - drug effects Plant Leaves - drug effects Plant Leaves - immunology Plant Leaves - metabolism Plant Leaves - microbiology Plant Proteins - genetics Plant Proteins - metabolism Plant-pathogen relationships Plants, Genetically Modified - drug effects Plants, Genetically Modified - immunology Plants, Genetically Modified - metabolism Plants, Genetically Modified - microbiology R&D Reactive Oxygen Species - metabolism Reducing Agents - pharmacology Research & development Software Studies Thylakoids - drug effects Thylakoids - metabolism Xanthophyll Xanthophylls - metabolism Zeaxanthins - metabolism |
title | Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20of%20the%20Xanthophyll%20Cycle%20Increases%20Plant%20Susceptibility%20to%20Sclerotinia%20sclerotiorum&rft.jtitle=PLoS%20pathogens&rft.au=Zhou,%20Jun&rft.date=2015-05-01&rft.volume=11&rft.issue=5&rft.spage=e1004878&rft.epage=e1004878&rft.pages=e1004878-e1004878&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1004878&rft_dat=%3Cgale_plos_%3EA418465471%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c699t-b9420b38c2a93e81683f32f1d5a7f270aeda9f0bdc002b1b30ec240c386d514f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1682886174&rft_id=info:pmid/25993128&rft_galeid=A418465471&rfr_iscdi=true |