Loading…

Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis

Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrac...

Full description

Saved in:
Bibliographic Details
Published in:PLoS neglected tropical diseases 2015-02, Vol.9 (2), p.e0003476-e0003476
Main Authors: Monte-Neto, Rubens, Laffitte, Marie-Claude N, Leprohon, Philippe, Reis, Priscila, Frézard, Frédéric, Ouellette, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0003476