Loading…
Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check
Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass...
Saved in:
Published in: | PloS one 2015-07, Vol.10 (7), p.e0131431-e0131431 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c592t-a76ab73a4ef86e0df1b6e41e29614c7192b104e34c836930e4e1eefc551448153 |
---|---|
cites | cdi_FETCH-LOGICAL-c592t-a76ab73a4ef86e0df1b6e41e29614c7192b104e34c836930e4e1eefc551448153 |
container_end_page | e0131431 |
container_issue | 7 |
container_start_page | e0131431 |
container_title | PloS one |
container_volume | 10 |
creator | Dubovskaya, Olga P Tang, Kam W Gladyshev, Michail I Kirillin, Georgiy Buseva, Zhanna Kasprzak, Peter Tolomeev, Aleksandr P Grossart, Hans-Peter |
description | Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies.
We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature.
Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. |
doi_str_mv | 10.1371/journal.pone.0131431 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1694517110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_59f91924ba614197a27f5b5e6203ea02</doaj_id><sourcerecordid>1694963179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a76ab73a4ef86e0df1b6e41e29614c7192b104e34c836930e4e1eefc551448153</originalsourceid><addsrcrecordid>eNptUl1v0zAUjRCIjcE_QGCJF15S7Nhxah4moTKgUscQGy-8WDfJTes2tYPtTtof4Hfj0mzaEE_-Oufce49Plr1kdMJ4xd6t3c5b6CeDszihjDPB2aPsmCle5LKg_PG9_VH2LIQ1pSWfSvk0OyokE1Kp8jj7fRai2UI0dknmllyauCM_nRt6sJvoLPnqbP7NY5sQ6XTufITexBtiLAFLLnqzdPk5Bhe9G1amIQvYIOm825JLbM0WbSRXHgbyESK8JzO4RoghUVvyHQ9KsxU2m-fZkw76gC_G9ST78ensavYlX1x8ns8-LPKmVEXMoZJQVxwEdlOJtO1YLVEwLFQaqKmYKmpGBXLRTLlUnKJAhtg1ZcmEmLKSn2SvD7pD74IeLQyaSSVKVjFGE2J-QLQO1nrwyRx_ox0Y_ffC-aUGH03Toy5Vp1JJUUOqzlQFRdWVdYl7xxFokbROx2q7eottk9zw0D8QffhizUov3bUWQhVK7Zt5Owp492uHIeqtCQ326XfQ7Q59K8lZpRL0zT_Q_08nDqjGuxA8dnfNMKr3sbpl6X2s9BirRHt1f5A70m2O-B9pVstm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694517110</pqid></control><display><type>article</type><title>Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Dubovskaya, Olga P ; Tang, Kam W ; Gladyshev, Michail I ; Kirillin, Georgiy ; Buseva, Zhanna ; Kasprzak, Peter ; Tolomeev, Aleksandr P ; Grossart, Hans-Peter</creator><contributor>Ban, Syuhei</contributor><creatorcontrib>Dubovskaya, Olga P ; Tang, Kam W ; Gladyshev, Michail I ; Kirillin, Georgiy ; Buseva, Zhanna ; Kasprzak, Peter ; Tolomeev, Aleksandr P ; Grossart, Hans-Peter ; Ban, Syuhei</creatorcontrib><description>Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies.
We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature.
Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0131431</identifier><identifier>PMID: 26146995</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Benthos ; Biophysics ; Bosmina longirostris ; Carbon cycle ; Carcasses ; Cladocera ; Copepoda ; Ecosystem ; Ecosystems ; Empirical models ; Fisheries ; Food Chain ; Food chains ; Food webs ; Freshwater ecology ; Lake sediments ; Lakes ; Limnology ; Microorganisms ; Mortality ; Nutrient dynamics ; Plankton ; Population biology ; Population Dynamics ; Predation ; Seasons ; Sedimentation & deposition ; Sediments ; Shallow water ; Turbulence ; Turbulent flow ; Velocity ; Water column ; Zooplankton ; Zooplankton - physiology</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0131431-e0131431</ispartof><rights>2015 Dubovskaya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Dubovskaya et al 2015 Dubovskaya et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a76ab73a4ef86e0df1b6e41e29614c7192b104e34c836930e4e1eefc551448153</citedby><cites>FETCH-LOGICAL-c592t-a76ab73a4ef86e0df1b6e41e29614c7192b104e34c836930e4e1eefc551448153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1694517110/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1694517110?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26146995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ban, Syuhei</contributor><creatorcontrib>Dubovskaya, Olga P</creatorcontrib><creatorcontrib>Tang, Kam W</creatorcontrib><creatorcontrib>Gladyshev, Michail I</creatorcontrib><creatorcontrib>Kirillin, Georgiy</creatorcontrib><creatorcontrib>Buseva, Zhanna</creatorcontrib><creatorcontrib>Kasprzak, Peter</creatorcontrib><creatorcontrib>Tolomeev, Aleksandr P</creatorcontrib><creatorcontrib>Grossart, Hans-Peter</creatorcontrib><title>Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies.
We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature.
Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed.</description><subject>Animals</subject><subject>Benthos</subject><subject>Biophysics</subject><subject>Bosmina longirostris</subject><subject>Carbon cycle</subject><subject>Carcasses</subject><subject>Cladocera</subject><subject>Copepoda</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Empirical models</subject><subject>Fisheries</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Freshwater ecology</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Limnology</subject><subject>Microorganisms</subject><subject>Mortality</subject><subject>Nutrient dynamics</subject><subject>Plankton</subject><subject>Population biology</subject><subject>Population Dynamics</subject><subject>Predation</subject><subject>Seasons</subject><subject>Sedimentation & deposition</subject><subject>Sediments</subject><subject>Shallow water</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Water column</subject><subject>Zooplankton</subject><subject>Zooplankton - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1v0zAUjRCIjcE_QGCJF15S7Nhxah4moTKgUscQGy-8WDfJTes2tYPtTtof4Hfj0mzaEE_-Oufce49Plr1kdMJ4xd6t3c5b6CeDszihjDPB2aPsmCle5LKg_PG9_VH2LIQ1pSWfSvk0OyokE1Kp8jj7fRai2UI0dknmllyauCM_nRt6sJvoLPnqbP7NY5sQ6XTufITexBtiLAFLLnqzdPk5Bhe9G1amIQvYIOm825JLbM0WbSRXHgbyESK8JzO4RoghUVvyHQ9KsxU2m-fZkw76gC_G9ST78ensavYlX1x8ns8-LPKmVEXMoZJQVxwEdlOJtO1YLVEwLFQaqKmYKmpGBXLRTLlUnKJAhtg1ZcmEmLKSn2SvD7pD74IeLQyaSSVKVjFGE2J-QLQO1nrwyRx_ox0Y_ffC-aUGH03Toy5Vp1JJUUOqzlQFRdWVdYl7xxFokbROx2q7eottk9zw0D8QffhizUov3bUWQhVK7Zt5Owp492uHIeqtCQ326XfQ7Q59K8lZpRL0zT_Q_08nDqjGuxA8dnfNMKr3sbpl6X2s9BirRHt1f5A70m2O-B9pVstm</recordid><startdate>20150706</startdate><enddate>20150706</enddate><creator>Dubovskaya, Olga P</creator><creator>Tang, Kam W</creator><creator>Gladyshev, Michail I</creator><creator>Kirillin, Georgiy</creator><creator>Buseva, Zhanna</creator><creator>Kasprzak, Peter</creator><creator>Tolomeev, Aleksandr P</creator><creator>Grossart, Hans-Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150706</creationdate><title>Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check</title><author>Dubovskaya, Olga P ; Tang, Kam W ; Gladyshev, Michail I ; Kirillin, Georgiy ; Buseva, Zhanna ; Kasprzak, Peter ; Tolomeev, Aleksandr P ; Grossart, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a76ab73a4ef86e0df1b6e41e29614c7192b104e34c836930e4e1eefc551448153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Benthos</topic><topic>Biophysics</topic><topic>Bosmina longirostris</topic><topic>Carbon cycle</topic><topic>Carcasses</topic><topic>Cladocera</topic><topic>Copepoda</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Empirical models</topic><topic>Fisheries</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Freshwater ecology</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Limnology</topic><topic>Microorganisms</topic><topic>Mortality</topic><topic>Nutrient dynamics</topic><topic>Plankton</topic><topic>Population biology</topic><topic>Population Dynamics</topic><topic>Predation</topic><topic>Seasons</topic><topic>Sedimentation & deposition</topic><topic>Sediments</topic><topic>Shallow water</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Water column</topic><topic>Zooplankton</topic><topic>Zooplankton - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubovskaya, Olga P</creatorcontrib><creatorcontrib>Tang, Kam W</creatorcontrib><creatorcontrib>Gladyshev, Michail I</creatorcontrib><creatorcontrib>Kirillin, Georgiy</creatorcontrib><creatorcontrib>Buseva, Zhanna</creatorcontrib><creatorcontrib>Kasprzak, Peter</creatorcontrib><creatorcontrib>Tolomeev, Aleksandr P</creatorcontrib><creatorcontrib>Grossart, Hans-Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubovskaya, Olga P</au><au>Tang, Kam W</au><au>Gladyshev, Michail I</au><au>Kirillin, Georgiy</au><au>Buseva, Zhanna</au><au>Kasprzak, Peter</au><au>Tolomeev, Aleksandr P</au><au>Grossart, Hans-Peter</au><au>Ban, Syuhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-06</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0131431</spage><epage>e0131431</epage><pages>e0131431-e0131431</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies.
We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature.
Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26146995</pmid><doi>10.1371/journal.pone.0131431</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-07, Vol.10 (7), p.e0131431-e0131431 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1694517110 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Animals Benthos Biophysics Bosmina longirostris Carbon cycle Carcasses Cladocera Copepoda Ecosystem Ecosystems Empirical models Fisheries Food Chain Food chains Food webs Freshwater ecology Lake sediments Lakes Limnology Microorganisms Mortality Nutrient dynamics Plankton Population biology Population Dynamics Predation Seasons Sedimentation & deposition Sediments Shallow water Turbulence Turbulent flow Velocity Water column Zooplankton Zooplankton - physiology |
title | Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20In%20Situ%20Zooplankton%20Non-Predation%20Mortality%20in%20an%20Oligo-Mesotrophic%20Lake%20from%20Sediment%20Trap%20Data:%20Caveats%20and%20Reality%20Check&rft.jtitle=PloS%20one&rft.au=Dubovskaya,%20Olga%20P&rft.date=2015-07-06&rft.volume=10&rft.issue=7&rft.spage=e0131431&rft.epage=e0131431&rft.pages=e0131431-e0131431&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0131431&rft_dat=%3Cproquest_plos_%3E1694963179%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c592t-a76ab73a4ef86e0df1b6e41e29614c7192b104e34c836930e4e1eefc551448153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1694517110&rft_id=info:pmid/26146995&rfr_iscdi=true |