Loading…

On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation

Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very succ...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-07, Vol.10 (7), p.e0130140-e0130140
Main Authors: Bach, Sebastian, Binder, Alexander, Montavon, Grégoire, Klauschen, Frederick, Müller, Klaus-Robert, Samek, Wojciech
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-7c7d2e256f5a0f55e3597d643f310b5011be7250fa6f1e98d404da4d1718f9b43
cites cdi_FETCH-LOGICAL-c758t-7c7d2e256f5a0f55e3597d643f310b5011be7250fa6f1e98d404da4d1718f9b43
container_end_page e0130140
container_issue 7
container_start_page e0130140
container_title PloS one
container_volume 10
creator Bach, Sebastian
Binder, Alexander
Montavon, Grégoire
Klauschen, Frederick
Müller, Klaus-Robert
Samek, Wojciech
description Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very successfully a plethora of tasks, they have in most cases the disadvantage of acting as a black box, not providing any information about what made them arrive at a particular decision. This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers. We introduce a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks. These pixel contributions can be visualized as heatmaps and are provided to a human expert who can intuitively not only verify the validity of the classification decision, but also focus further analysis on regions of potential interest. We evaluate our method for classifiers trained on PASCAL VOC 2009 images, synthetic image data containing geometric shapes, the MNIST handwritten digits data set and for the pre-trained ImageNet model available as part of the Caffe open source package.
doi_str_mv 10.1371/journal.pone.0130140
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1695377961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421593630</galeid><doaj_id>oai_doaj_org_article_1889e731d1be48abb891b7c2d7c4c899</doaj_id><sourcerecordid>A421593630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-7c7d2e256f5a0f55e3597d643f310b5011be7250fa6f1e98d404da4d1718f9b43</originalsourceid><addsrcrecordid>eNqNk02P0zAQhiMEYpeFf4AgEhKCQ4odx3F8QVqVBSpVdLV8HS3HGbeu3LjYyar997htdtWiPaAcHNnP-45nPJMkLzEaYcLwh6XrfSvtaO1aGCFMEC7Qo-Qcc5JnZY7I46P_s-RZCEuEKKnK8mlylpe4xJyS86Setem12YDNfpsA6dVmbWUrO-PakGrn02-uzaamBenTsZUhGG3Ap59AmbBn6m06lVvwB_kNWLiVrYL02ru1nO-NnidPtLQBXgzrRfLz89WP8ddsOvsyGV9OM8Vo1WVMsSaHnJaaSqQpBUI5a8qCaIJRTRHGNbCcIi1LjYFXTYGKRhYNZrjSvC7IRfL64Lu2LoihPEHgMibKGC9xJCYHonFyKdberKTfCieN2G84PxfSd0ZZELiqODCCmxi1qGRdVxzXTOUNU4WqOI9eH4dofb2CRkHbeWlPTE9PWrMQc3crioJXjJJo8G4w8O5PD6ETKxMU2Fh_cP3-3vGNYto79M0_6MPZDdRcxgRMq12Mq3am4rLIMeWkJChSoweo-DWwMir2kjZx_0Tw_kQQmQ423Vz2IYjJ95v_Z2e_Ttm3R-wCpO0Wwdl-33unYHEAlXcheND3RcZI7EbhrhpiNwpiGIUoe3X8QPeiu94nfwHUVQK0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695377961</pqid></control><display><type>article</type><title>On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bach, Sebastian ; Binder, Alexander ; Montavon, Grégoire ; Klauschen, Frederick ; Müller, Klaus-Robert ; Samek, Wojciech</creator><contributor>Suarez, Oscar Deniz</contributor><creatorcontrib>Bach, Sebastian ; Binder, Alexander ; Montavon, Grégoire ; Klauschen, Frederick ; Müller, Klaus-Robert ; Samek, Wojciech ; Suarez, Oscar Deniz</creatorcontrib><description>Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very successfully a plethora of tasks, they have in most cases the disadvantage of acting as a black box, not providing any information about what made them arrive at a particular decision. This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers. We introduce a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks. These pixel contributions can be visualized as heatmaps and are provided to a human expert who can intuitively not only verify the validity of the classification decision, but also focus further analysis on regions of potential interest. We evaluate our method for classifiers trained on PASCAL VOC 2009 images, synthetic image data containing geometric shapes, the MNIST handwritten digits data set and for the pre-trained ImageNet model available as part of the Caffe open source package.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0130140</identifier><identifier>PMID: 26161953</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Black boxes ; Classification ; Classification systems ; Classifiers ; Decision analysis ; Decisions ; Decomposition ; Digits ; Handwriting ; Humans ; Image classification ; Image Processing, Computer-Assisted - methods ; Information systems ; Learning algorithms ; Machine learning ; Neural networks ; Pattern Recognition, Automated - methods ; Pixels ; Taxonomy ; VOCs ; Volatile organic compounds</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0130140-e0130140</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Bach et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Bach et al 2015 Bach et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-7c7d2e256f5a0f55e3597d643f310b5011be7250fa6f1e98d404da4d1718f9b43</citedby><cites>FETCH-LOGICAL-c758t-7c7d2e256f5a0f55e3597d643f310b5011be7250fa6f1e98d404da4d1718f9b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1695377961/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1695377961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26161953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Suarez, Oscar Deniz</contributor><creatorcontrib>Bach, Sebastian</creatorcontrib><creatorcontrib>Binder, Alexander</creatorcontrib><creatorcontrib>Montavon, Grégoire</creatorcontrib><creatorcontrib>Klauschen, Frederick</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><creatorcontrib>Samek, Wojciech</creatorcontrib><title>On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very successfully a plethora of tasks, they have in most cases the disadvantage of acting as a black box, not providing any information about what made them arrive at a particular decision. This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers. We introduce a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks. These pixel contributions can be visualized as heatmaps and are provided to a human expert who can intuitively not only verify the validity of the classification decision, but also focus further analysis on regions of potential interest. We evaluate our method for classifiers trained on PASCAL VOC 2009 images, synthetic image data containing geometric shapes, the MNIST handwritten digits data set and for the pre-trained ImageNet model available as part of the Caffe open source package.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Black boxes</subject><subject>Classification</subject><subject>Classification systems</subject><subject>Classifiers</subject><subject>Decision analysis</subject><subject>Decisions</subject><subject>Decomposition</subject><subject>Digits</subject><subject>Handwriting</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Information systems</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pixels</subject><subject>Taxonomy</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk02P0zAQhiMEYpeFf4AgEhKCQ4odx3F8QVqVBSpVdLV8HS3HGbeu3LjYyar997htdtWiPaAcHNnP-45nPJMkLzEaYcLwh6XrfSvtaO1aGCFMEC7Qo-Qcc5JnZY7I46P_s-RZCEuEKKnK8mlylpe4xJyS86Setem12YDNfpsA6dVmbWUrO-PakGrn02-uzaamBenTsZUhGG3Ap59AmbBn6m06lVvwB_kNWLiVrYL02ru1nO-NnidPtLQBXgzrRfLz89WP8ddsOvsyGV9OM8Vo1WVMsSaHnJaaSqQpBUI5a8qCaIJRTRHGNbCcIi1LjYFXTYGKRhYNZrjSvC7IRfL64Lu2LoihPEHgMibKGC9xJCYHonFyKdberKTfCieN2G84PxfSd0ZZELiqODCCmxi1qGRdVxzXTOUNU4WqOI9eH4dofb2CRkHbeWlPTE9PWrMQc3crioJXjJJo8G4w8O5PD6ETKxMU2Fh_cP3-3vGNYto79M0_6MPZDdRcxgRMq12Mq3am4rLIMeWkJChSoweo-DWwMir2kjZx_0Tw_kQQmQ423Vz2IYjJ95v_Z2e_Ttm3R-wCpO0Wwdl-33unYHEAlXcheND3RcZI7EbhrhpiNwpiGIUoe3X8QPeiu94nfwHUVQK0</recordid><startdate>20150710</startdate><enddate>20150710</enddate><creator>Bach, Sebastian</creator><creator>Binder, Alexander</creator><creator>Montavon, Grégoire</creator><creator>Klauschen, Frederick</creator><creator>Müller, Klaus-Robert</creator><creator>Samek, Wojciech</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150710</creationdate><title>On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation</title><author>Bach, Sebastian ; Binder, Alexander ; Montavon, Grégoire ; Klauschen, Frederick ; Müller, Klaus-Robert ; Samek, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-7c7d2e256f5a0f55e3597d643f310b5011be7250fa6f1e98d404da4d1718f9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Black boxes</topic><topic>Classification</topic><topic>Classification systems</topic><topic>Classifiers</topic><topic>Decision analysis</topic><topic>Decisions</topic><topic>Decomposition</topic><topic>Digits</topic><topic>Handwriting</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Information systems</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pixels</topic><topic>Taxonomy</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bach, Sebastian</creatorcontrib><creatorcontrib>Binder, Alexander</creatorcontrib><creatorcontrib>Montavon, Grégoire</creatorcontrib><creatorcontrib>Klauschen, Frederick</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><creatorcontrib>Samek, Wojciech</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bach, Sebastian</au><au>Binder, Alexander</au><au>Montavon, Grégoire</au><au>Klauschen, Frederick</au><au>Müller, Klaus-Robert</au><au>Samek, Wojciech</au><au>Suarez, Oscar Deniz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-10</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0130140</spage><epage>e0130140</epage><pages>e0130140-e0130140</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very successfully a plethora of tasks, they have in most cases the disadvantage of acting as a black box, not providing any information about what made them arrive at a particular decision. This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers. We introduce a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks. These pixel contributions can be visualized as heatmaps and are provided to a human expert who can intuitively not only verify the validity of the classification decision, but also focus further analysis on regions of potential interest. We evaluate our method for classifiers trained on PASCAL VOC 2009 images, synthetic image data containing geometric shapes, the MNIST handwritten digits data set and for the pre-trained ImageNet model available as part of the Caffe open source package.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26161953</pmid><doi>10.1371/journal.pone.0130140</doi><tpages>e0130140</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-07, Vol.10 (7), p.e0130140-e0130140
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1695377961
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Black boxes
Classification
Classification systems
Classifiers
Decision analysis
Decisions
Decomposition
Digits
Handwriting
Humans
Image classification
Image Processing, Computer-Assisted - methods
Information systems
Learning algorithms
Machine learning
Neural networks
Pattern Recognition, Automated - methods
Pixels
Taxonomy
VOCs
Volatile organic compounds
title On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Pixel-Wise%20Explanations%20for%20Non-Linear%20Classifier%20Decisions%20by%20Layer-Wise%20Relevance%20Propagation&rft.jtitle=PloS%20one&rft.au=Bach,%20Sebastian&rft.date=2015-07-10&rft.volume=10&rft.issue=7&rft.spage=e0130140&rft.epage=e0130140&rft.pages=e0130140-e0130140&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0130140&rft_dat=%3Cgale_plos_%3EA421593630%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-7c7d2e256f5a0f55e3597d643f310b5011be7250fa6f1e98d404da4d1718f9b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1695377961&rft_id=info:pmid/26161953&rft_galeid=A421593630&rfr_iscdi=true