Loading…

The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan

Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-rela...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2015-06, Vol.11 (6), p.e1005282-e1005282
Main Authors: Quan, Zhenzhen, Cao, Lu, Tang, Yingzhi, Yan, Yanchun, Oliver, Stephen G, Zhang, Nianshu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-1ec3870084df32ed1a9a6120edec4faabda004fa9b9988ce4344025071af05b63
cites cdi_FETCH-LOGICAL-c498t-1ec3870084df32ed1a9a6120edec4faabda004fa9b9988ce4344025071af05b63
container_end_page e1005282
container_issue 6
container_start_page e1005282
container_title PLoS genetics
container_volume 11
creator Quan, Zhenzhen
Cao, Lu
Tang, Yingzhi
Yan, Yanchun
Oliver, Stephen G
Zhang, Nianshu
description Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.
doi_str_mv 10.1371/journal.pgen.1005282
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1696855882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_edbf6dc795f64ceca73bb1e61143410f</doaj_id><sourcerecordid>1691287143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-1ec3870084df32ed1a9a6120edec4faabda004fa9b9988ce4344025071af05b63</originalsourceid><addsrcrecordid>eNpVUktvEzEQXiEQLYV_gMBHLhv82rX3goSi0kYNQohy4GTNesfJBmed2rtI-fc4TVq1J4_G32P8eYriPaMzJhT7vAlTHMDPdiscZozSimv-ojhnVSVKJal8-aQ-K96ktKFUVLpRr4szXjMqGOfnBdyukfxBSCO5-nVTCnIdtsGH1YTku_3LyCIRIDe4J_MwjDF4j5EER35OPSaLg0Vymft7AkNH5usYhgO5t-DJsneYdjC8LV458Anfnc6L4ve3y9v5dbn8cbWYf12WVjZ6LBlaoRWlWnZOcOwYNFAzTrFDKx1A2wGluWjaptHaohRSUl5RxcDRqq3FRfHxqLvzIZlTOsmwuql1VWnNM2JxRHQBNmYX-y3EvQnQm_tGiCsDceytR4Nd6-rOqqZytbRoQYm2ZVgzln0ZdVnry8ltarfY5SjGCP6Z6POboV-bVfhnpFRKNzILfDoJxHA3YRrNts-Jeg8Dhul-bsa1yn4ZKo9QG0NKEd2jDaPmsAsPrzWHXTCnXci0D09HfCQ9fL74DzOEsrU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691287143</pqid></control><display><type>article</type><title>The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Quan, Zhenzhen ; Cao, Lu ; Tang, Yingzhi ; Yan, Yanchun ; Oliver, Stephen G ; Zhang, Nianshu</creator><contributor>Longo, Valter D.</contributor><creatorcontrib>Quan, Zhenzhen ; Cao, Lu ; Tang, Yingzhi ; Yan, Yanchun ; Oliver, Stephen G ; Zhang, Nianshu ; Longo, Valter D.</creatorcontrib><description>Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005282</identifier><identifier>PMID: 26103122</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acquisitions &amp; mergers ; Carbohydrates ; Cell Cycle ; Colleges &amp; universities ; Deoxyribonucleic acid ; DNA ; Experiments ; Gene expression ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Kinases ; Protein Kinases - genetics ; Protein Kinases - metabolism ; ras Proteins - genetics ; ras Proteins - metabolism ; Respiration ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Software ; Stress response ; Stress, Physiological ; Yeast</subject><ispartof>PLoS genetics, 2015-06, Vol.11 (6), p.e1005282-e1005282</ispartof><rights>2015 Quan et al 2015 Quan et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Quan Z, Cao L, Tang Y, Yan Y, Oliver SG, Zhang N (2015) The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan. PLoS Genet 11(6): e1005282. doi:10.1371/journal.pgen.1005282</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-1ec3870084df32ed1a9a6120edec4faabda004fa9b9988ce4344025071af05b63</citedby><cites>FETCH-LOGICAL-c498t-1ec3870084df32ed1a9a6120edec4faabda004fa9b9988ce4344025071af05b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477894/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477894/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26103122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Longo, Valter D.</contributor><creatorcontrib>Quan, Zhenzhen</creatorcontrib><creatorcontrib>Cao, Lu</creatorcontrib><creatorcontrib>Tang, Yingzhi</creatorcontrib><creatorcontrib>Yan, Yanchun</creatorcontrib><creatorcontrib>Oliver, Stephen G</creatorcontrib><creatorcontrib>Zhang, Nianshu</creatorcontrib><title>The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.</description><subject>Acquisitions &amp; mergers</subject><subject>Carbohydrates</subject><subject>Cell Cycle</subject><subject>Colleges &amp; universities</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Kinases</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - metabolism</subject><subject>Respiration</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Software</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUktvEzEQXiEQLYV_gMBHLhv82rX3goSi0kYNQohy4GTNesfJBmed2rtI-fc4TVq1J4_G32P8eYriPaMzJhT7vAlTHMDPdiscZozSimv-ojhnVSVKJal8-aQ-K96ktKFUVLpRr4szXjMqGOfnBdyukfxBSCO5-nVTCnIdtsGH1YTku_3LyCIRIDe4J_MwjDF4j5EER35OPSaLg0Vymft7AkNH5usYhgO5t-DJsneYdjC8LV458Anfnc6L4ve3y9v5dbn8cbWYf12WVjZ6LBlaoRWlWnZOcOwYNFAzTrFDKx1A2wGluWjaptHaohRSUl5RxcDRqq3FRfHxqLvzIZlTOsmwuql1VWnNM2JxRHQBNmYX-y3EvQnQm_tGiCsDceytR4Nd6-rOqqZytbRoQYm2ZVgzln0ZdVnry8ltarfY5SjGCP6Z6POboV-bVfhnpFRKNzILfDoJxHA3YRrNts-Jeg8Dhul-bsa1yn4ZKo9QG0NKEd2jDaPmsAsPrzWHXTCnXci0D09HfCQ9fL74DzOEsrU</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Quan, Zhenzhen</creator><creator>Cao, Lu</creator><creator>Tang, Yingzhi</creator><creator>Yan, Yanchun</creator><creator>Oliver, Stephen G</creator><creator>Zhang, Nianshu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150601</creationdate><title>The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan</title><author>Quan, Zhenzhen ; Cao, Lu ; Tang, Yingzhi ; Yan, Yanchun ; Oliver, Stephen G ; Zhang, Nianshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-1ec3870084df32ed1a9a6120edec4faabda004fa9b9988ce4344025071af05b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acquisitions &amp; mergers</topic><topic>Carbohydrates</topic><topic>Cell Cycle</topic><topic>Colleges &amp; universities</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Kinases</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - metabolism</topic><topic>Respiration</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Software</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Zhenzhen</creatorcontrib><creatorcontrib>Cao, Lu</creatorcontrib><creatorcontrib>Tang, Yingzhi</creatorcontrib><creatorcontrib>Yan, Yanchun</creatorcontrib><creatorcontrib>Oliver, Stephen G</creatorcontrib><creatorcontrib>Zhang, Nianshu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Zhenzhen</au><au>Cao, Lu</au><au>Tang, Yingzhi</au><au>Yan, Yanchun</au><au>Oliver, Stephen G</au><au>Zhang, Nianshu</au><au>Longo, Valter D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>11</volume><issue>6</issue><spage>e1005282</spage><epage>e1005282</epage><pages>e1005282-e1005282</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26103122</pmid><doi>10.1371/journal.pgen.1005282</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2015-06, Vol.11 (6), p.e1005282-e1005282
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1696855882
source Publicly Available Content Database; PubMed Central
subjects Acquisitions & mergers
Carbohydrates
Cell Cycle
Colleges & universities
Deoxyribonucleic acid
DNA
Experiments
Gene expression
Glycogen Synthase Kinase 3 - genetics
Glycogen Synthase Kinase 3 - metabolism
Kinases
Protein Kinases - genetics
Protein Kinases - metabolism
ras Proteins - genetics
ras Proteins - metabolism
Respiration
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Software
Stress response
Stress, Physiological
Yeast
title The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Yeast%20GSK-3%20Homologue%20Mck1%20Is%20a%20Key%20Controller%20of%20Quiescence%20Entry%20and%20Chronological%20Lifespan&rft.jtitle=PLoS%20genetics&rft.au=Quan,%20Zhenzhen&rft.date=2015-06-01&rft.volume=11&rft.issue=6&rft.spage=e1005282&rft.epage=e1005282&rft.pages=e1005282-e1005282&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005282&rft_dat=%3Cproquest_plos_%3E1691287143%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-1ec3870084df32ed1a9a6120edec4faabda004fa9b9988ce4344025071af05b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1691287143&rft_id=info:pmid/26103122&rfr_iscdi=true