Loading…
Modular Small Diameter Vascular Grafts with Bioactive Functionalities
We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosa...
Saved in:
Published in: | PloS one 2015-07, Vol.10 (7), p.e0133632 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-1dc99dd64cfa7952254fd2a962af987f12158a1f5b00bba760289da1810034693 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-1dc99dd64cfa7952254fd2a962af987f12158a1f5b00bba760289da1810034693 |
container_end_page | |
container_issue | 7 |
container_start_page | e0133632 |
container_title | PloS one |
container_volume | 10 |
creator | Neufurth, Meik Wang, Xiaohong Tolba, Emad Dorweiler, Bernhard Schröder, Heinz C Link, Thorben Diehl-Seifert, Bärbel Müller, Werner E G |
description | We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca(2+) through formation of Ca(2+) bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca(2+)-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca(2+). In this universal scaffold of the bTEBV biomaterial, polycations such as poly(L-Lys), poly(D-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca(2+)-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(L-Lys), poly(D-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable polymeric scaffold bTEBV is a promising biomaterial for future prosthetic vascular grafts. |
doi_str_mv | 10.1371/journal.pone.0133632 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1698387557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422863594</galeid><doaj_id>oai_doaj_org_article_e08f5f728c7f410eb2e07253d21fdb96</doaj_id><sourcerecordid>A422863594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1dc99dd64cfa7952254fd2a962af987f12158a1f5b00bba760289da1810034693</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13zP5Eaota0LlYLV3oZMJtlNyUzWJFP135vdnZYd6YXkIuHkOe_JOXmL4iUEc4gr-OHGD6GXbr72vZ4DiDHD6FFxCDlGM4YAfrx3PiiexXgDAMU1Y0-LA5SDhCJ-WJx-9e3gZCivOulc-dnKTicdymsZ1TZ-HqRJsfxl06r8ZL1Uyd7q8mzo88Hn-jZZHZ8XT4x0Ub8Y96Pix9np95Mvs4vL88XJ8cVMMY7SDLaK87ZlRBlZcYoQJaZFkjMkDa8rAxGktYSGNgA0jawYQDVvJawhAJgwjo-K1zvdtfNRjBOIAjJe47qitMrEYke0Xt6IdbCdDH-El1ZsAz4shQzJKqeFBrWhpkK1qgyBQDdIgwpR3CJo2oazrPVxrDY0nW6V7lOQbiI6ventSiz9rSAUogrgLPBuFAj-56BjEp2NSjsne-2H7bs54YiTTa03_6APdzdSS5kbsL3xua7aiIpjglDNMOUkU_MHqLxa3VmV7WJsjk8S3k8SMpP077SUQ4xicfXt_9nL6yn7do9daenSKno3bJwTpyDZgSr4GIM290OGQGzcfjcNsXG7GN2e017tf9B90p298V_5G_iE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698387557</pqid></control><display><type>article</type><title>Modular Small Diameter Vascular Grafts with Bioactive Functionalities</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Neufurth, Meik ; Wang, Xiaohong ; Tolba, Emad ; Dorweiler, Bernhard ; Schröder, Heinz C ; Link, Thorben ; Diehl-Seifert, Bärbel ; Müller, Werner E G</creator><contributor>Zhao, Feng</contributor><creatorcontrib>Neufurth, Meik ; Wang, Xiaohong ; Tolba, Emad ; Dorweiler, Bernhard ; Schröder, Heinz C ; Link, Thorben ; Diehl-Seifert, Bärbel ; Müller, Werner E G ; Zhao, Feng</creatorcontrib><description>We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca(2+) through formation of Ca(2+) bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca(2+)-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca(2+). In this universal scaffold of the bTEBV biomaterial, polycations such as poly(L-Lys), poly(D-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca(2+)-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(L-Lys), poly(D-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable polymeric scaffold bTEBV is a promising biomaterial for future prosthetic vascular grafts.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0133632</identifier><identifier>PMID: 26204529</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Absorbable Implants ; Adhesion ; Alginates - chemistry ; Alginic acid ; Biocompatible Materials - chemistry ; Biological products ; Biomaterials ; Biomedical materials ; Biomimetics ; Biopolymers ; Blood ; Blood Coagulation - drug effects ; Blood plasma ; Blood Vessel Prosthesis ; Blood vessels ; Calcium alginate ; Calcium chloride ; Calcium Chloride - pharmacology ; Cell adhesion & migration ; Cell Line, Transformed ; Cell recognition ; Chitosan ; Chitosan - chemistry ; Clotting ; Collagen ; Elastic Modulus ; Endothelial cells ; Endothelial Cells - cytology ; Fabrication ; Gelatin ; Gene expression ; Glucuronic Acid - chemistry ; Grafting ; Grafts ; Hardening ; Hemodialysis ; Hexuronic Acids - chemistry ; Human Umbilical Vein Endothelial Cells - cytology ; Humans ; Hydrogels ; Hydrogels - chemistry ; Kinases ; Materials Testing ; Mechanical properties ; Mercury ; Modular engineering ; Modulus of elasticity ; Natural polymers ; Oligopeptides - pharmacology ; Organ transplantation ; Peptides ; Physiology ; Polyanions ; Polycations ; Polyethylene terephthalate ; Polymers ; Polyphosphates - chemistry ; Pressure ; Prostheses ; Prostheses and implants ; Silica ; Silica gel ; Silicon Dioxide ; Stem cells ; Tensile Strength ; Thrombosis ; Tissue Engineering ; Tissue Scaffolds ; Transplants & implants ; Umbilical vein ; Vascular Grafting ; Vascular surgery</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0133632</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Neufurth et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Neufurth et al 2015 Neufurth et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1dc99dd64cfa7952254fd2a962af987f12158a1f5b00bba760289da1810034693</citedby><cites>FETCH-LOGICAL-c692t-1dc99dd64cfa7952254fd2a962af987f12158a1f5b00bba760289da1810034693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1698387557/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1698387557?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26204529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, Feng</contributor><creatorcontrib>Neufurth, Meik</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Tolba, Emad</creatorcontrib><creatorcontrib>Dorweiler, Bernhard</creatorcontrib><creatorcontrib>Schröder, Heinz C</creatorcontrib><creatorcontrib>Link, Thorben</creatorcontrib><creatorcontrib>Diehl-Seifert, Bärbel</creatorcontrib><creatorcontrib>Müller, Werner E G</creatorcontrib><title>Modular Small Diameter Vascular Grafts with Bioactive Functionalities</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca(2+) through formation of Ca(2+) bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca(2+)-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca(2+). In this universal scaffold of the bTEBV biomaterial, polycations such as poly(L-Lys), poly(D-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca(2+)-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(L-Lys), poly(D-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable polymeric scaffold bTEBV is a promising biomaterial for future prosthetic vascular grafts.</description><subject>Absorbable Implants</subject><subject>Adhesion</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological products</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Biopolymers</subject><subject>Blood</subject><subject>Blood Coagulation - drug effects</subject><subject>Blood plasma</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood vessels</subject><subject>Calcium alginate</subject><subject>Calcium chloride</subject><subject>Calcium Chloride - pharmacology</subject><subject>Cell adhesion & migration</subject><subject>Cell Line, Transformed</subject><subject>Cell recognition</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Clotting</subject><subject>Collagen</subject><subject>Elastic Modulus</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Fabrication</subject><subject>Gelatin</subject><subject>Gene expression</subject><subject>Glucuronic Acid - chemistry</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Hardening</subject><subject>Hemodialysis</subject><subject>Hexuronic Acids - chemistry</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Kinases</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Mercury</subject><subject>Modular engineering</subject><subject>Modulus of elasticity</subject><subject>Natural polymers</subject><subject>Oligopeptides - pharmacology</subject><subject>Organ transplantation</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Polyanions</subject><subject>Polycations</subject><subject>Polyethylene terephthalate</subject><subject>Polymers</subject><subject>Polyphosphates - chemistry</subject><subject>Pressure</subject><subject>Prostheses</subject><subject>Prostheses and implants</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Silicon Dioxide</subject><subject>Stem cells</subject><subject>Tensile Strength</subject><subject>Thrombosis</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Transplants & implants</subject><subject>Umbilical vein</subject><subject>Vascular Grafting</subject><subject>Vascular surgery</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13zP5Eaota0LlYLV3oZMJtlNyUzWJFP135vdnZYd6YXkIuHkOe_JOXmL4iUEc4gr-OHGD6GXbr72vZ4DiDHD6FFxCDlGM4YAfrx3PiiexXgDAMU1Y0-LA5SDhCJ-WJx-9e3gZCivOulc-dnKTicdymsZ1TZ-HqRJsfxl06r8ZL1Uyd7q8mzo88Hn-jZZHZ8XT4x0Ub8Y96Pix9np95Mvs4vL88XJ8cVMMY7SDLaK87ZlRBlZcYoQJaZFkjMkDa8rAxGktYSGNgA0jawYQDVvJawhAJgwjo-K1zvdtfNRjBOIAjJe47qitMrEYke0Xt6IdbCdDH-El1ZsAz4shQzJKqeFBrWhpkK1qgyBQDdIgwpR3CJo2oazrPVxrDY0nW6V7lOQbiI6ventSiz9rSAUogrgLPBuFAj-56BjEp2NSjsne-2H7bs54YiTTa03_6APdzdSS5kbsL3xua7aiIpjglDNMOUkU_MHqLxa3VmV7WJsjk8S3k8SMpP077SUQ4xicfXt_9nL6yn7do9daenSKno3bJwTpyDZgSr4GIM290OGQGzcfjcNsXG7GN2e017tf9B90p298V_5G_iE</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Neufurth, Meik</creator><creator>Wang, Xiaohong</creator><creator>Tolba, Emad</creator><creator>Dorweiler, Bernhard</creator><creator>Schröder, Heinz C</creator><creator>Link, Thorben</creator><creator>Diehl-Seifert, Bärbel</creator><creator>Müller, Werner E G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150723</creationdate><title>Modular Small Diameter Vascular Grafts with Bioactive Functionalities</title><author>Neufurth, Meik ; Wang, Xiaohong ; Tolba, Emad ; Dorweiler, Bernhard ; Schröder, Heinz C ; Link, Thorben ; Diehl-Seifert, Bärbel ; Müller, Werner E G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1dc99dd64cfa7952254fd2a962af987f12158a1f5b00bba760289da1810034693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorbable Implants</topic><topic>Adhesion</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological products</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Biopolymers</topic><topic>Blood</topic><topic>Blood Coagulation - drug effects</topic><topic>Blood plasma</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood vessels</topic><topic>Calcium alginate</topic><topic>Calcium chloride</topic><topic>Calcium Chloride - pharmacology</topic><topic>Cell adhesion & migration</topic><topic>Cell Line, Transformed</topic><topic>Cell recognition</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Clotting</topic><topic>Collagen</topic><topic>Elastic Modulus</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Fabrication</topic><topic>Gelatin</topic><topic>Gene expression</topic><topic>Glucuronic Acid - chemistry</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Hardening</topic><topic>Hemodialysis</topic><topic>Hexuronic Acids - chemistry</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Kinases</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Mercury</topic><topic>Modular engineering</topic><topic>Modulus of elasticity</topic><topic>Natural polymers</topic><topic>Oligopeptides - pharmacology</topic><topic>Organ transplantation</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Polyanions</topic><topic>Polycations</topic><topic>Polyethylene terephthalate</topic><topic>Polymers</topic><topic>Polyphosphates - chemistry</topic><topic>Pressure</topic><topic>Prostheses</topic><topic>Prostheses and implants</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Silicon Dioxide</topic><topic>Stem cells</topic><topic>Tensile Strength</topic><topic>Thrombosis</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Transplants & implants</topic><topic>Umbilical vein</topic><topic>Vascular Grafting</topic><topic>Vascular surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neufurth, Meik</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Tolba, Emad</creatorcontrib><creatorcontrib>Dorweiler, Bernhard</creatorcontrib><creatorcontrib>Schröder, Heinz C</creatorcontrib><creatorcontrib>Link, Thorben</creatorcontrib><creatorcontrib>Diehl-Seifert, Bärbel</creatorcontrib><creatorcontrib>Müller, Werner E G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neufurth, Meik</au><au>Wang, Xiaohong</au><au>Tolba, Emad</au><au>Dorweiler, Bernhard</au><au>Schröder, Heinz C</au><au>Link, Thorben</au><au>Diehl-Seifert, Bärbel</au><au>Müller, Werner E G</au><au>Zhao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular Small Diameter Vascular Grafts with Bioactive Functionalities</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0133632</spage><pages>e0133632-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca(2+) through formation of Ca(2+) bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca(2+)-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca(2+). In this universal scaffold of the bTEBV biomaterial, polycations such as poly(L-Lys), poly(D-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca(2+)-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(L-Lys), poly(D-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable polymeric scaffold bTEBV is a promising biomaterial for future prosthetic vascular grafts.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26204529</pmid><doi>10.1371/journal.pone.0133632</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-07, Vol.10 (7), p.e0133632 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1698387557 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | Absorbable Implants Adhesion Alginates - chemistry Alginic acid Biocompatible Materials - chemistry Biological products Biomaterials Biomedical materials Biomimetics Biopolymers Blood Blood Coagulation - drug effects Blood plasma Blood Vessel Prosthesis Blood vessels Calcium alginate Calcium chloride Calcium Chloride - pharmacology Cell adhesion & migration Cell Line, Transformed Cell recognition Chitosan Chitosan - chemistry Clotting Collagen Elastic Modulus Endothelial cells Endothelial Cells - cytology Fabrication Gelatin Gene expression Glucuronic Acid - chemistry Grafting Grafts Hardening Hemodialysis Hexuronic Acids - chemistry Human Umbilical Vein Endothelial Cells - cytology Humans Hydrogels Hydrogels - chemistry Kinases Materials Testing Mechanical properties Mercury Modular engineering Modulus of elasticity Natural polymers Oligopeptides - pharmacology Organ transplantation Peptides Physiology Polyanions Polycations Polyethylene terephthalate Polymers Polyphosphates - chemistry Pressure Prostheses Prostheses and implants Silica Silica gel Silicon Dioxide Stem cells Tensile Strength Thrombosis Tissue Engineering Tissue Scaffolds Transplants & implants Umbilical vein Vascular Grafting Vascular surgery |
title | Modular Small Diameter Vascular Grafts with Bioactive Functionalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20Small%20Diameter%20Vascular%20Grafts%20with%20Bioactive%20Functionalities&rft.jtitle=PloS%20one&rft.au=Neufurth,%20Meik&rft.date=2015-07-23&rft.volume=10&rft.issue=7&rft.spage=e0133632&rft.pages=e0133632-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0133632&rft_dat=%3Cgale_plos_%3EA422863594%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-1dc99dd64cfa7952254fd2a962af987f12158a1f5b00bba760289da1810034693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1698387557&rft_id=info:pmid/26204529&rft_galeid=A422863594&rfr_iscdi=true |