Loading…
Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods
In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically ev...
Saved in:
Published in: | PloS one 2015-08, Vol.10 (8), p.e0135725-e0135725 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c592t-774c129785e3b39d3fc88e1aa7565388359945a5219a6ef7d20b64ef177f3b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c592t-774c129785e3b39d3fc88e1aa7565388359945a5219a6ef7d20b64ef177f3b13 |
container_end_page | e0135725 |
container_issue | 8 |
container_start_page | e0135725 |
container_title | PloS one |
container_volume | 10 |
creator | Krediet, Cory J DeNofrio, Jan C Caruso, Carlo Burriesci, Matthew S Cella, Kristen Pringle, John R |
description | In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling), while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue. |
doi_str_mv | 10.1371/journal.pone.0135725 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1708482670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f15e0c30c42444284e1bf1fa4e33c30</doaj_id><sourcerecordid>1706207633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-774c129785e3b39d3fc88e1aa7565388359945a5219a6ef7d20b64ef177f3b13</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEoqXwBggssWHRGXx3skGqIloqFRVBWVuOczLjURJPbadoxMvjdtKqRaxsHf_nOxf_RfGW4CVhinza-CmMpl9u_QhLTJhQVDwrDknF6EJSzJ4_uh8Ur2LcYCxYKeXL4oBKWhHO1WHx54fZuvYYfQ9gXYRjZMYWnVg7BZMA1X4aU0S-Qz93Q-N860Y3DaiGvo_oV3TjCqU1oLPJ3Bh02vvfqN4lP0CCsCeZjBi2JrjoR5Q8uszygL5BWvs2vi5edKaP8GY-j4qr0y9X9dfFxeXZeX1ysbCiommhFLeEVqoUwBpWtayzZQnEGCVkHqhkoqq4MIKSykjoVEtxIzl0RKmONYQdFe_32G3vo57XFjVRuOQllQpnxfle0Xqz0dvgBhN22hun7wI-rLQJydkeNO2IAGwZtpxyzmnJgTQd6QwHxnI4sz7P1aZmgNbCmILpn0CfvoxurVf-RnPBJeU0Az7OgOCvJ4hJDy7avHEzgp_u-s5fqiRjWfrhH-n_p-N7lQ0-xgDdQzME61sr3WfpWyvp2Uo57d3jQR6S7r3D_gL9XMZU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708482670</pqid></control><display><type>article</type><title>Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Krediet, Cory J ; DeNofrio, Jan C ; Caruso, Carlo ; Burriesci, Matthew S ; Cella, Kristen ; Pringle, John R</creator><contributor>Moustafa, Ahmed</contributor><creatorcontrib>Krediet, Cory J ; DeNofrio, Jan C ; Caruso, Carlo ; Burriesci, Matthew S ; Cella, Kristen ; Pringle, John R ; Moustafa, Ahmed</creatorcontrib><description>In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling), while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0135725</identifier><identifier>PMID: 26291447</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algae ; Animals ; Automation ; Cnidaria - cytology ; Counting ; Dinoflagellida - cytology ; Electrolytes ; Flow Cytometry - methods ; Fluorescence ; Gene expression ; Guava ; Image processing ; Medicine ; Microorganisms ; Proteins ; Sample preparation ; Sampling methods ; Symbiodinium ; Symbiosis ; Symbiosis - physiology</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0135725-e0135725</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-774c129785e3b39d3fc88e1aa7565388359945a5219a6ef7d20b64ef177f3b13</citedby><cites>FETCH-LOGICAL-c592t-774c129785e3b39d3fc88e1aa7565388359945a5219a6ef7d20b64ef177f3b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1708482670/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1708482670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26291447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moustafa, Ahmed</contributor><creatorcontrib>Krediet, Cory J</creatorcontrib><creatorcontrib>DeNofrio, Jan C</creatorcontrib><creatorcontrib>Caruso, Carlo</creatorcontrib><creatorcontrib>Burriesci, Matthew S</creatorcontrib><creatorcontrib>Cella, Kristen</creatorcontrib><creatorcontrib>Pringle, John R</creatorcontrib><title>Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling), while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue.</description><subject>Accuracy</subject><subject>Algae</subject><subject>Animals</subject><subject>Automation</subject><subject>Cnidaria - cytology</subject><subject>Counting</subject><subject>Dinoflagellida - cytology</subject><subject>Electrolytes</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Guava</subject><subject>Image processing</subject><subject>Medicine</subject><subject>Microorganisms</subject><subject>Proteins</subject><subject>Sample preparation</subject><subject>Sampling methods</subject><subject>Symbiodinium</subject><subject>Symbiosis</subject><subject>Symbiosis - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiMEoqXwBggssWHRGXx3skGqIloqFRVBWVuOczLjURJPbadoxMvjdtKqRaxsHf_nOxf_RfGW4CVhinza-CmMpl9u_QhLTJhQVDwrDknF6EJSzJ4_uh8Ur2LcYCxYKeXL4oBKWhHO1WHx54fZuvYYfQ9gXYRjZMYWnVg7BZMA1X4aU0S-Qz93Q-N860Y3DaiGvo_oV3TjCqU1oLPJ3Bh02vvfqN4lP0CCsCeZjBi2JrjoR5Q8uszygL5BWvs2vi5edKaP8GY-j4qr0y9X9dfFxeXZeX1ysbCiommhFLeEVqoUwBpWtayzZQnEGCVkHqhkoqq4MIKSykjoVEtxIzl0RKmONYQdFe_32G3vo57XFjVRuOQllQpnxfle0Xqz0dvgBhN22hun7wI-rLQJydkeNO2IAGwZtpxyzmnJgTQd6QwHxnI4sz7P1aZmgNbCmILpn0CfvoxurVf-RnPBJeU0Az7OgOCvJ4hJDy7avHEzgp_u-s5fqiRjWfrhH-n_p-N7lQ0-xgDdQzME61sr3WfpWyvp2Uo57d3jQR6S7r3D_gL9XMZU</recordid><startdate>20150820</startdate><enddate>20150820</enddate><creator>Krediet, Cory J</creator><creator>DeNofrio, Jan C</creator><creator>Caruso, Carlo</creator><creator>Burriesci, Matthew S</creator><creator>Cella, Kristen</creator><creator>Pringle, John R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150820</creationdate><title>Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods</title><author>Krediet, Cory J ; DeNofrio, Jan C ; Caruso, Carlo ; Burriesci, Matthew S ; Cella, Kristen ; Pringle, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-774c129785e3b39d3fc88e1aa7565388359945a5219a6ef7d20b64ef177f3b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algae</topic><topic>Animals</topic><topic>Automation</topic><topic>Cnidaria - cytology</topic><topic>Counting</topic><topic>Dinoflagellida - cytology</topic><topic>Electrolytes</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Guava</topic><topic>Image processing</topic><topic>Medicine</topic><topic>Microorganisms</topic><topic>Proteins</topic><topic>Sample preparation</topic><topic>Sampling methods</topic><topic>Symbiodinium</topic><topic>Symbiosis</topic><topic>Symbiosis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krediet, Cory J</creatorcontrib><creatorcontrib>DeNofrio, Jan C</creatorcontrib><creatorcontrib>Caruso, Carlo</creatorcontrib><creatorcontrib>Burriesci, Matthew S</creatorcontrib><creatorcontrib>Cella, Kristen</creatorcontrib><creatorcontrib>Pringle, John R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krediet, Cory J</au><au>DeNofrio, Jan C</au><au>Caruso, Carlo</au><au>Burriesci, Matthew S</au><au>Cella, Kristen</au><au>Pringle, John R</au><au>Moustafa, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-20</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0135725</spage><epage>e0135725</epage><pages>e0135725-e0135725</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling), while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26291447</pmid><doi>10.1371/journal.pone.0135725</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-08, Vol.10 (8), p.e0135725-e0135725 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1708482670 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Algae Animals Automation Cnidaria - cytology Counting Dinoflagellida - cytology Electrolytes Flow Cytometry - methods Fluorescence Gene expression Guava Image processing Medicine Microorganisms Proteins Sample preparation Sampling methods Symbiodinium Symbiosis Symbiosis - physiology |
title | Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid,%20Precise,%20and%20Accurate%20Counts%20of%20Symbiodinium%20Cells%20Using%20the%20Guava%20Flow%20Cytometer,%20and%20a%20Comparison%20to%20Other%20Methods&rft.jtitle=PloS%20one&rft.au=Krediet,%20Cory%20J&rft.date=2015-08-20&rft.volume=10&rft.issue=8&rft.spage=e0135725&rft.epage=e0135725&rft.pages=e0135725-e0135725&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0135725&rft_dat=%3Cproquest_plos_%3E1706207633%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c592t-774c129785e3b39d3fc88e1aa7565388359945a5219a6ef7d20b64ef177f3b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1708482670&rft_id=info:pmid/26291447&rfr_iscdi=true |