Loading…
Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks
Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging pr...
Saved in:
Published in: | PloS one 2015-09, Vol.10 (9), p.e0137036-e0137036 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63 |
container_end_page | e0137036 |
container_issue | 9 |
container_start_page | e0137036 |
container_title | PloS one |
container_volume | 10 |
creator | Ypsilantis, Petros-Pavlos Siddique, Musib Sohn, Hyon-Mok Davies, Andrew Cook, Gary Goh, Vicky Montana, Giovanni |
description | Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. |
doi_str_mv | 10.1371/journal.pone.0137036 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1715677898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428232950</galeid><doaj_id>oai_doaj_org_article_2857ca773ffd49deb320efc871bd1b88</doaj_id><sourcerecordid>A428232950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</originalsourceid><addsrcrecordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJLfMkL0lQNqDSxaWy8Wo7jJC5pXGynY98ep82mBu0BRYqtk9__3HJOkryGYA4xg59WtnedbOcb2-k5iCaA6ZPkGOYYzSgC-OnB_Sh54f0KAII5pc-TI0QxISjnx0l56XRpVDBdnV5pH515nQabftdWlqt-K7uQLhq9tqHRTm7u0lsTmvTy7DpdrmU9qG788F7YbmvbPhgbc4rq3u2OcGvdL_8yeVbJ1utX43mS3Hw5u158m51ffF0uTs9niuYozGjGNUOkZCQmp3KkGGWwAgCXIM-oQpwWPCOkyHTGqowhDisMMlBhhFEONMUnydu9301rvRgb5AVkkFDGeM4jsdwTpZUrsXFmLd2dsNKIncG6WkgXjGq1QJwwJRnDVVVmeakLjICuFGewKGHBB1-fx2h9sdal0l2IRU-cTr90phG13YqMUMLgkO6H0YGzv3vtg1gbr3Tbyk7bfpc3JJhlu1jv_kEfr26kahkLMF1lY1w1OBWnGeJDmwiI1PwRKj6lXhsVp6ky0T4RfJwIIhP0n1DL3nux_HH1_-zFzyn7_oBttGxD48ch8lMw24PKWe-drh6aDIEYluG-G2JYBjEuQ5S9OfxBD6L76cd_AR8OA2I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715677898</pqid></control><display><type>article</type><title>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ypsilantis, Petros-Pavlos ; Siddique, Musib ; Sohn, Hyon-Mok ; Davies, Andrew ; Cook, Gary ; Goh, Vicky ; Montana, Giovanni</creator><contributor>Anto, Ruby John</contributor><creatorcontrib>Ypsilantis, Petros-Pavlos ; Siddique, Musib ; Sohn, Hyon-Mok ; Davies, Andrew ; Cook, Gary ; Goh, Vicky ; Montana, Giovanni ; Anto, Ruby John</creatorcontrib><description>Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137036</identifier><identifier>PMID: 26355298</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adjuvant chemotherapy ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Cancer ; Cancer therapies ; Chemotherapy ; Esophageal cancer ; Esophageal Neoplasms - diagnostic imaging ; Esophageal Neoplasms - drug therapy ; Esophagus ; Feature extraction ; Female ; Fluorodeoxyglucose F18 ; Gamma rays ; Humans ; Image Processing, Computer-Assisted ; Imaging ; Kaplan-Meier Estimate ; Male ; Medical imaging ; Medical prognosis ; Metabolism ; Methods ; Middle Aged ; Neoadjuvant Therapy ; Neural networks ; Neural Networks, Computer ; Nuclear medicine ; Patients ; Positron emission ; Positron emission tomography ; Prediction models ; Radiation therapy ; Radiomics ; Studies ; Surgery ; Systematic review ; Texture ; Tomography ; Treatment Outcome</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0137036-e0137036</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Ypsilantis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Ypsilantis et al 2015 Ypsilantis et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</citedby><cites>FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1715677898/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1715677898?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26355298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Anto, Ruby John</contributor><creatorcontrib>Ypsilantis, Petros-Pavlos</creatorcontrib><creatorcontrib>Siddique, Musib</creatorcontrib><creatorcontrib>Sohn, Hyon-Mok</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Cook, Gary</creatorcontrib><creatorcontrib>Goh, Vicky</creatorcontrib><creatorcontrib>Montana, Giovanni</creatorcontrib><title>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.</description><subject>Adjuvant chemotherapy</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Esophageal cancer</subject><subject>Esophageal Neoplasms - diagnostic imaging</subject><subject>Esophageal Neoplasms - drug therapy</subject><subject>Esophagus</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Gamma rays</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Kaplan-Meier Estimate</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Neoadjuvant Therapy</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nuclear medicine</subject><subject>Patients</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Prediction models</subject><subject>Radiation therapy</subject><subject>Radiomics</subject><subject>Studies</subject><subject>Surgery</subject><subject>Systematic review</subject><subject>Texture</subject><subject>Tomography</subject><subject>Treatment Outcome</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJLfMkL0lQNqDSxaWy8Wo7jJC5pXGynY98ep82mBu0BRYqtk9__3HJOkryGYA4xg59WtnedbOcb2-k5iCaA6ZPkGOYYzSgC-OnB_Sh54f0KAII5pc-TI0QxISjnx0l56XRpVDBdnV5pH515nQabftdWlqt-K7uQLhq9tqHRTm7u0lsTmvTy7DpdrmU9qG788F7YbmvbPhgbc4rq3u2OcGvdL_8yeVbJ1utX43mS3Hw5u158m51ffF0uTs9niuYozGjGNUOkZCQmp3KkGGWwAgCXIM-oQpwWPCOkyHTGqowhDisMMlBhhFEONMUnydu9301rvRgb5AVkkFDGeM4jsdwTpZUrsXFmLd2dsNKIncG6WkgXjGq1QJwwJRnDVVVmeakLjICuFGewKGHBB1-fx2h9sdal0l2IRU-cTr90phG13YqMUMLgkO6H0YGzv3vtg1gbr3Tbyk7bfpc3JJhlu1jv_kEfr26kahkLMF1lY1w1OBWnGeJDmwiI1PwRKj6lXhsVp6ky0T4RfJwIIhP0n1DL3nux_HH1_-zFzyn7_oBttGxD48ch8lMw24PKWe-drh6aDIEYluG-G2JYBjEuQ5S9OfxBD6L76cd_AR8OA2I</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Ypsilantis, Petros-Pavlos</creator><creator>Siddique, Musib</creator><creator>Sohn, Hyon-Mok</creator><creator>Davies, Andrew</creator><creator>Cook, Gary</creator><creator>Goh, Vicky</creator><creator>Montana, Giovanni</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150910</creationdate><title>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</title><author>Ypsilantis, Petros-Pavlos ; Siddique, Musib ; Sohn, Hyon-Mok ; Davies, Andrew ; Cook, Gary ; Goh, Vicky ; Montana, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjuvant chemotherapy</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Esophageal cancer</topic><topic>Esophageal Neoplasms - diagnostic imaging</topic><topic>Esophageal Neoplasms - drug therapy</topic><topic>Esophagus</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Gamma rays</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Kaplan-Meier Estimate</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Neoadjuvant Therapy</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nuclear medicine</topic><topic>Patients</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Prediction models</topic><topic>Radiation therapy</topic><topic>Radiomics</topic><topic>Studies</topic><topic>Surgery</topic><topic>Systematic review</topic><topic>Texture</topic><topic>Tomography</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ypsilantis, Petros-Pavlos</creatorcontrib><creatorcontrib>Siddique, Musib</creatorcontrib><creatorcontrib>Sohn, Hyon-Mok</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Cook, Gary</creatorcontrib><creatorcontrib>Goh, Vicky</creatorcontrib><creatorcontrib>Montana, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ypsilantis, Petros-Pavlos</au><au>Siddique, Musib</au><au>Sohn, Hyon-Mok</au><au>Davies, Andrew</au><au>Cook, Gary</au><au>Goh, Vicky</au><au>Montana, Giovanni</au><au>Anto, Ruby John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-10</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0137036</spage><epage>e0137036</epage><pages>e0137036-e0137036</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26355298</pmid><doi>10.1371/journal.pone.0137036</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-09, Vol.10 (9), p.e0137036-e0137036 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1715677898 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adjuvant chemotherapy Adult Aged Aged, 80 and over Algorithms Artificial intelligence Artificial neural networks Cancer Cancer therapies Chemotherapy Esophageal cancer Esophageal Neoplasms - diagnostic imaging Esophageal Neoplasms - drug therapy Esophagus Feature extraction Female Fluorodeoxyglucose F18 Gamma rays Humans Image Processing, Computer-Assisted Imaging Kaplan-Meier Estimate Male Medical imaging Medical prognosis Metabolism Methods Middle Aged Neoadjuvant Therapy Neural networks Neural Networks, Computer Nuclear medicine Patients Positron emission Positron emission tomography Prediction models Radiation therapy Radiomics Studies Surgery Systematic review Texture Tomography Treatment Outcome |
title | Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Response%20to%20Neoadjuvant%20Chemotherapy%20with%20PET%20Imaging%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=PloS%20one&rft.au=Ypsilantis,%20Petros-Pavlos&rft.date=2015-09-10&rft.volume=10&rft.issue=9&rft.spage=e0137036&rft.epage=e0137036&rft.pages=e0137036-e0137036&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137036&rft_dat=%3Cgale_plos_%3EA428232950%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1715677898&rft_id=info:pmid/26355298&rft_galeid=A428232950&rfr_iscdi=true |