Loading…

Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks

Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging pr...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-09, Vol.10 (9), p.e0137036-e0137036
Main Authors: Ypsilantis, Petros-Pavlos, Siddique, Musib, Sohn, Hyon-Mok, Davies, Andrew, Cook, Gary, Goh, Vicky, Montana, Giovanni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63
cites cdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63
container_end_page e0137036
container_issue 9
container_start_page e0137036
container_title PloS one
container_volume 10
creator Ypsilantis, Petros-Pavlos
Siddique, Musib
Sohn, Hyon-Mok
Davies, Andrew
Cook, Gary
Goh, Vicky
Montana, Giovanni
description Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.
doi_str_mv 10.1371/journal.pone.0137036
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1715677898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428232950</galeid><doaj_id>oai_doaj_org_article_2857ca773ffd49deb320efc871bd1b88</doaj_id><sourcerecordid>A428232950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</originalsourceid><addsrcrecordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJLfMkL0lQNqDSxaWy8Wo7jJC5pXGynY98ep82mBu0BRYqtk9__3HJOkryGYA4xg59WtnedbOcb2-k5iCaA6ZPkGOYYzSgC-OnB_Sh54f0KAII5pc-TI0QxISjnx0l56XRpVDBdnV5pH515nQabftdWlqt-K7uQLhq9tqHRTm7u0lsTmvTy7DpdrmU9qG788F7YbmvbPhgbc4rq3u2OcGvdL_8yeVbJ1utX43mS3Hw5u158m51ffF0uTs9niuYozGjGNUOkZCQmp3KkGGWwAgCXIM-oQpwWPCOkyHTGqowhDisMMlBhhFEONMUnydu9301rvRgb5AVkkFDGeM4jsdwTpZUrsXFmLd2dsNKIncG6WkgXjGq1QJwwJRnDVVVmeakLjICuFGewKGHBB1-fx2h9sdal0l2IRU-cTr90phG13YqMUMLgkO6H0YGzv3vtg1gbr3Tbyk7bfpc3JJhlu1jv_kEfr26kahkLMF1lY1w1OBWnGeJDmwiI1PwRKj6lXhsVp6ky0T4RfJwIIhP0n1DL3nux_HH1_-zFzyn7_oBttGxD48ch8lMw24PKWe-drh6aDIEYluG-G2JYBjEuQ5S9OfxBD6L76cd_AR8OA2I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715677898</pqid></control><display><type>article</type><title>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ypsilantis, Petros-Pavlos ; Siddique, Musib ; Sohn, Hyon-Mok ; Davies, Andrew ; Cook, Gary ; Goh, Vicky ; Montana, Giovanni</creator><contributor>Anto, Ruby John</contributor><creatorcontrib>Ypsilantis, Petros-Pavlos ; Siddique, Musib ; Sohn, Hyon-Mok ; Davies, Andrew ; Cook, Gary ; Goh, Vicky ; Montana, Giovanni ; Anto, Ruby John</creatorcontrib><description>Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137036</identifier><identifier>PMID: 26355298</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adjuvant chemotherapy ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Cancer ; Cancer therapies ; Chemotherapy ; Esophageal cancer ; Esophageal Neoplasms - diagnostic imaging ; Esophageal Neoplasms - drug therapy ; Esophagus ; Feature extraction ; Female ; Fluorodeoxyglucose F18 ; Gamma rays ; Humans ; Image Processing, Computer-Assisted ; Imaging ; Kaplan-Meier Estimate ; Male ; Medical imaging ; Medical prognosis ; Metabolism ; Methods ; Middle Aged ; Neoadjuvant Therapy ; Neural networks ; Neural Networks, Computer ; Nuclear medicine ; Patients ; Positron emission ; Positron emission tomography ; Prediction models ; Radiation therapy ; Radiomics ; Studies ; Surgery ; Systematic review ; Texture ; Tomography ; Treatment Outcome</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0137036-e0137036</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Ypsilantis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Ypsilantis et al 2015 Ypsilantis et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</citedby><cites>FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1715677898/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1715677898?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26355298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Anto, Ruby John</contributor><creatorcontrib>Ypsilantis, Petros-Pavlos</creatorcontrib><creatorcontrib>Siddique, Musib</creatorcontrib><creatorcontrib>Sohn, Hyon-Mok</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Cook, Gary</creatorcontrib><creatorcontrib>Goh, Vicky</creatorcontrib><creatorcontrib>Montana, Giovanni</creatorcontrib><title>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.</description><subject>Adjuvant chemotherapy</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Esophageal cancer</subject><subject>Esophageal Neoplasms - diagnostic imaging</subject><subject>Esophageal Neoplasms - drug therapy</subject><subject>Esophagus</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Gamma rays</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Kaplan-Meier Estimate</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Neoadjuvant Therapy</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nuclear medicine</subject><subject>Patients</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Prediction models</subject><subject>Radiation therapy</subject><subject>Radiomics</subject><subject>Studies</subject><subject>Surgery</subject><subject>Systematic review</subject><subject>Texture</subject><subject>Tomography</subject><subject>Treatment Outcome</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJLfMkL0lQNqDSxaWy8Wo7jJC5pXGynY98ep82mBu0BRYqtk9__3HJOkryGYA4xg59WtnedbOcb2-k5iCaA6ZPkGOYYzSgC-OnB_Sh54f0KAII5pc-TI0QxISjnx0l56XRpVDBdnV5pH515nQabftdWlqt-K7uQLhq9tqHRTm7u0lsTmvTy7DpdrmU9qG788F7YbmvbPhgbc4rq3u2OcGvdL_8yeVbJ1utX43mS3Hw5u158m51ffF0uTs9niuYozGjGNUOkZCQmp3KkGGWwAgCXIM-oQpwWPCOkyHTGqowhDisMMlBhhFEONMUnydu9301rvRgb5AVkkFDGeM4jsdwTpZUrsXFmLd2dsNKIncG6WkgXjGq1QJwwJRnDVVVmeakLjICuFGewKGHBB1-fx2h9sdal0l2IRU-cTr90phG13YqMUMLgkO6H0YGzv3vtg1gbr3Tbyk7bfpc3JJhlu1jv_kEfr26kahkLMF1lY1w1OBWnGeJDmwiI1PwRKj6lXhsVp6ky0T4RfJwIIhP0n1DL3nux_HH1_-zFzyn7_oBttGxD48ch8lMw24PKWe-drh6aDIEYluG-G2JYBjEuQ5S9OfxBD6L76cd_AR8OA2I</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Ypsilantis, Petros-Pavlos</creator><creator>Siddique, Musib</creator><creator>Sohn, Hyon-Mok</creator><creator>Davies, Andrew</creator><creator>Cook, Gary</creator><creator>Goh, Vicky</creator><creator>Montana, Giovanni</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150910</creationdate><title>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</title><author>Ypsilantis, Petros-Pavlos ; Siddique, Musib ; Sohn, Hyon-Mok ; Davies, Andrew ; Cook, Gary ; Goh, Vicky ; Montana, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjuvant chemotherapy</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Esophageal cancer</topic><topic>Esophageal Neoplasms - diagnostic imaging</topic><topic>Esophageal Neoplasms - drug therapy</topic><topic>Esophagus</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Gamma rays</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Kaplan-Meier Estimate</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Neoadjuvant Therapy</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nuclear medicine</topic><topic>Patients</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Prediction models</topic><topic>Radiation therapy</topic><topic>Radiomics</topic><topic>Studies</topic><topic>Surgery</topic><topic>Systematic review</topic><topic>Texture</topic><topic>Tomography</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ypsilantis, Petros-Pavlos</creatorcontrib><creatorcontrib>Siddique, Musib</creatorcontrib><creatorcontrib>Sohn, Hyon-Mok</creatorcontrib><creatorcontrib>Davies, Andrew</creatorcontrib><creatorcontrib>Cook, Gary</creatorcontrib><creatorcontrib>Goh, Vicky</creatorcontrib><creatorcontrib>Montana, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ypsilantis, Petros-Pavlos</au><au>Siddique, Musib</au><au>Sohn, Hyon-Mok</au><au>Davies, Andrew</au><au>Cook, Gary</au><au>Goh, Vicky</au><au>Montana, Giovanni</au><au>Anto, Ruby John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-10</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0137036</spage><epage>e0137036</epage><pages>e0137036-e0137036</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26355298</pmid><doi>10.1371/journal.pone.0137036</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0137036-e0137036
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1715677898
source Publicly Available Content Database; PubMed Central
subjects Adjuvant chemotherapy
Adult
Aged
Aged, 80 and over
Algorithms
Artificial intelligence
Artificial neural networks
Cancer
Cancer therapies
Chemotherapy
Esophageal cancer
Esophageal Neoplasms - diagnostic imaging
Esophageal Neoplasms - drug therapy
Esophagus
Feature extraction
Female
Fluorodeoxyglucose F18
Gamma rays
Humans
Image Processing, Computer-Assisted
Imaging
Kaplan-Meier Estimate
Male
Medical imaging
Medical prognosis
Metabolism
Methods
Middle Aged
Neoadjuvant Therapy
Neural networks
Neural Networks, Computer
Nuclear medicine
Patients
Positron emission
Positron emission tomography
Prediction models
Radiation therapy
Radiomics
Studies
Surgery
Systematic review
Texture
Tomography
Treatment Outcome
title Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Response%20to%20Neoadjuvant%20Chemotherapy%20with%20PET%20Imaging%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=PloS%20one&rft.au=Ypsilantis,%20Petros-Pavlos&rft.date=2015-09-10&rft.volume=10&rft.issue=9&rft.spage=e0137036&rft.epage=e0137036&rft.pages=e0137036-e0137036&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137036&rft_dat=%3Cgale_plos_%3EA428232950%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-648e725d75552c92c7671f003d0946c286b8455b4e47f47281f3040f323290e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1715677898&rft_id=info:pmid/26355298&rft_galeid=A428232950&rfr_iscdi=true