Loading…

Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX

PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transpor...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-08, Vol.10 (8), p.e0137114-e0137114
Main Authors: Lüddecke, Jan, Forchhammer, Karl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4414-3a4b3539010bb114496a283b7f3c0989d2f70dcf83bc621b9639cae51c0617643
cites cdi_FETCH-LOGICAL-c4414-3a4b3539010bb114496a283b7f3c0989d2f70dcf83bc621b9639cae51c0617643
container_end_page e0137114
container_issue 8
container_start_page e0137114
container_title PloS one
container_volume 10
creator Lüddecke, Jan
Forchhammer, Karl
description PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.
doi_str_mv 10.1371/journal.pone.0137114
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1719268961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fbe639ace70485ba09510745025db58</doaj_id><sourcerecordid>3827974411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4414-3a4b3539010bb114496a283b7f3c0989d2f70dcf83bc621b9639cae51c0617643</originalsourceid><addsrcrecordid>eNptUl1v0zAUjRCIjcE_QGCJF15a_J3kBakqY0RMrFKLxJvlODdpqszubGfQ38CfxqXdtCGernV9zrn3Hp0se03wlLCcfNi40Vs9TLfOwhTvW4Q_yU5JyehEUsyePnifZC9C2GAsWCHl8-yESkZywfFp9vvcgu92aAk29LZDt-DDGBCdXP1y3TBG7XUE9Am2YBuwEc1WCx0ALX_20axRb1FcA5o7G70bkGvRcmfBrJ1xxiSZRVWhykbw2sTeWZRYa1TFgFbad5Dqt9nFV6Rtgxb99sfL7FmrhwCvjvUs-_75fDX_Mrm8uqjms8uJ4ZzwCdO8ZoKVmOC6TkfzUmpasDpvmcFlUTa0zXFj2tQykpK6lKw0GgQxWJJccnaWvT3obgcX1NHHoEhOSiqLUpKEqA6IxumN2vr-WvudcrpXfxvOd0r72JsBFG1rSAO0gRzzQtQal4LgnAtMRVOLIml9PE4b62toTHLR6-GR6OMf269V524VF4JKLpLA-6OAdzcjhKiu-2BgGLQFN-73xkUyg8g99N0_0P9fxw8o410IHtr7ZQhW-yDdsdQ-W-qYrUR78_CQe9JdmNgf3L_MGg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719268961</pqid></control><display><type>article</type><title>Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lüddecke, Jan ; Forchhammer, Karl</creator><contributor>Cascales, Eric</contributor><creatorcontrib>Lüddecke, Jan ; Forchhammer, Karl ; Cascales, Eric</creatorcontrib><description>PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0137114</identifier><identifier>PMID: 26317540</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>a-Ketoglutaric acid ; Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine triphosphatase ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - metabolism ; ATP ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding sites ; Biochemistry ; E coli ; Elongation ; Energy transfer ; Enzymes ; Escherichia coli ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; Gene expression ; Ketoglutaric acid ; Ketoglutaric Acids - metabolism ; Kinases ; Metabolism ; Metabolites ; Nitrogen ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; PII Nitrogen Regulatory Proteins - chemistry ; PII Nitrogen Regulatory Proteins - metabolism ; PII protein ; Protein Binding ; Protein Conformation ; Proteins ; Signal transduction ; Switches ; Synechococcus ; Synechococcus - chemistry ; Synechococcus - metabolism ; Synechococcus elongatus ; Transcription factors</subject><ispartof>PloS one, 2015-08, Vol.10 (8), p.e0137114-e0137114</ispartof><rights>2015 Lüddecke, Forchhammer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Lüddecke, Forchhammer 2015 Lüddecke, Forchhammer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4414-3a4b3539010bb114496a283b7f3c0989d2f70dcf83bc621b9639cae51c0617643</citedby><cites>FETCH-LOGICAL-c4414-3a4b3539010bb114496a283b7f3c0989d2f70dcf83bc621b9639cae51c0617643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1719268961/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1719268961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26317540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cascales, Eric</contributor><creatorcontrib>Lüddecke, Jan</creatorcontrib><creatorcontrib>Forchhammer, Karl</creatorcontrib><title>Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.</description><subject>a-Ketoglutaric acid</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>E coli</subject><subject>Elongation</subject><subject>Energy transfer</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Gene expression</subject><subject>Ketoglutaric acid</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Kinases</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nitrogen</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>PII Nitrogen Regulatory Proteins - chemistry</subject><subject>PII Nitrogen Regulatory Proteins - metabolism</subject><subject>PII protein</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Switches</subject><subject>Synechococcus</subject><subject>Synechococcus - chemistry</subject><subject>Synechococcus - metabolism</subject><subject>Synechococcus elongatus</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1v0zAUjRCIjcE_QGCJF15a_J3kBakqY0RMrFKLxJvlODdpqszubGfQ38CfxqXdtCGernV9zrn3Hp0se03wlLCcfNi40Vs9TLfOwhTvW4Q_yU5JyehEUsyePnifZC9C2GAsWCHl8-yESkZywfFp9vvcgu92aAk29LZDt-DDGBCdXP1y3TBG7XUE9Am2YBuwEc1WCx0ALX_20axRb1FcA5o7G70bkGvRcmfBrJ1xxiSZRVWhykbw2sTeWZRYa1TFgFbad5Dqt9nFV6Rtgxb99sfL7FmrhwCvjvUs-_75fDX_Mrm8uqjms8uJ4ZzwCdO8ZoKVmOC6TkfzUmpasDpvmcFlUTa0zXFj2tQykpK6lKw0GgQxWJJccnaWvT3obgcX1NHHoEhOSiqLUpKEqA6IxumN2vr-WvudcrpXfxvOd0r72JsBFG1rSAO0gRzzQtQal4LgnAtMRVOLIml9PE4b62toTHLR6-GR6OMf269V524VF4JKLpLA-6OAdzcjhKiu-2BgGLQFN-73xkUyg8g99N0_0P9fxw8o410IHtr7ZQhW-yDdsdQ-W-qYrUR78_CQe9JdmNgf3L_MGg</recordid><startdate>20150828</startdate><enddate>20150828</enddate><creator>Lüddecke, Jan</creator><creator>Forchhammer, Karl</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150828</creationdate><title>Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX</title><author>Lüddecke, Jan ; Forchhammer, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4414-3a4b3539010bb114496a283b7f3c0989d2f70dcf83bc621b9639cae51c0617643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>a-Ketoglutaric acid</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>E coli</topic><topic>Elongation</topic><topic>Energy transfer</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Gene expression</topic><topic>Ketoglutaric acid</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Kinases</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nitrogen</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>PII Nitrogen Regulatory Proteins - chemistry</topic><topic>PII Nitrogen Regulatory Proteins - metabolism</topic><topic>PII protein</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Switches</topic><topic>Synechococcus</topic><topic>Synechococcus - chemistry</topic><topic>Synechococcus - metabolism</topic><topic>Synechococcus elongatus</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lüddecke, Jan</creatorcontrib><creatorcontrib>Forchhammer, Karl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lüddecke, Jan</au><au>Forchhammer, Karl</au><au>Cascales, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-08-28</date><risdate>2015</risdate><volume>10</volume><issue>8</issue><spage>e0137114</spage><epage>e0137114</epage><pages>e0137114-e0137114</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26317540</pmid><doi>10.1371/journal.pone.0137114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-08, Vol.10 (8), p.e0137114-e0137114
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719268961
source Publicly Available Content Database; PubMed Central
subjects a-Ketoglutaric acid
Adenosine diphosphate
Adenosine Diphosphate - metabolism
Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - metabolism
ATP
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding sites
Biochemistry
E coli
Elongation
Energy transfer
Enzymes
Escherichia coli
Fluorescence resonance energy transfer
Fluorescence Resonance Energy Transfer - methods
Gene expression
Ketoglutaric acid
Ketoglutaric Acids - metabolism
Kinases
Metabolism
Metabolites
Nitrogen
Phosphotransferases (Alcohol Group Acceptor) - metabolism
PII Nitrogen Regulatory Proteins - chemistry
PII Nitrogen Regulatory Proteins - metabolism
PII protein
Protein Binding
Protein Conformation
Proteins
Signal transduction
Switches
Synechococcus
Synechococcus - chemistry
Synechococcus - metabolism
Synechococcus elongatus
Transcription factors
title Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Sensing%20versus%202-Oxoglutarate%20Dependent%20ATPase%20Switch%20in%20the%20Control%20of%20Synechococcus%20PII%20Interaction%20with%20Its%20Targets%20NAGK%20and%20PipX&rft.jtitle=PloS%20one&rft.au=L%C3%BCddecke,%20Jan&rft.date=2015-08-28&rft.volume=10&rft.issue=8&rft.spage=e0137114&rft.epage=e0137114&rft.pages=e0137114-e0137114&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0137114&rft_dat=%3Cproquest_plos_%3E3827974411%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4414-3a4b3539010bb114496a283b7f3c0989d2f70dcf83bc621b9639cae51c0617643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1719268961&rft_id=info:pmid/26317540&rfr_iscdi=true