Loading…

Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries

We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applic...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-09, Vol.10 (9), p.e0138142-e0138142
Main Authors: Hui, Sonya, Levy, Andrew S, Slack, Daniel L, Burnstein, Marcus J, Errett, Lee, Bonneau, Daniel, Latter, David, Rotstein, Ori D, Bolz, Steffen-Sebastian, Lidington, Darcy, Voigtlaender-Bolz, Julia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-1deafb1590edaa7cf3cd122f254e4b13a117b2d8841215dccfe95007b4df840d3
cites cdi_FETCH-LOGICAL-c692t-1deafb1590edaa7cf3cd122f254e4b13a117b2d8841215dccfe95007b4df840d3
container_end_page e0138142
container_issue 9
container_start_page e0138142
container_title PloS one
container_volume 10
creator Hui, Sonya
Levy, Andrew S
Slack, Daniel L
Burnstein, Marcus J
Errett, Lee
Bonneau, Daniel
Latter, David
Rotstein, Ori D
Bolz, Steffen-Sebastian
Lidington, Darcy
Voigtlaender-Bolz, Julia
description We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.
doi_str_mv 10.1371/journal.pone.0138142
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719284249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A428587017</galeid><doaj_id>oai_doaj_org_article_0076cb92bd094f78ae1922ad9df7ac14</doaj_id><sourcerecordid>A428587017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1deafb1590edaa7cf3cd122f254e4b13a117b2d8841215dccfe95007b4df840d3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJwyOKvxM4FaVUBXamoqAtcjWNPEldZe4mTiv57vN202qAeUA6OXj_zjj2eSZKXGC0w5fjDlR97p7rF1jtYIEwFZuRRcoxLSrKCIPr44P8oeRbCFUI5FUXxNDkiBS04Kchx8mu9ba1rfLAOMpx9a33YtmqAdG2b6B630ktoxi5KIf164xtwVkcpxLTBXoODEFLr0rNxo9xOt2FQTkO67AfoLYTnyZNadQFeTOtJ8uPzp--nZ9n5xZfV6fI800VJhgwbUHWF8xKBUYrrmmqDCalJzoBVmCqMeUWMEAwTnButayhzhHjFTC0YMvQkeb333XY-yKk4QWKOSyIYYWUkVnvCeHUlt73dqP5GemXlreD7Rqp-sLoDGY0LXZWkMqhkNRcKogtRpjQ1Vxqz6PVxyjZWGzAa3NCrbmY633G2lY2_liwvylzQaPBuMuj97xHCIDc2aOg65cCPt-cmXCDKRETf_IM-fLuJalS8gHW1j3n1zlQuGRG54AjzSC0eoOJnYGN17KTaRn0W8H4WEJkB_gyNGkOQq_Xl_7MXP-fs2wO2BdUNbfDdONjYV3OQ7UHd-xB6qO-LjJHcDcJdNeRuEOQ0CDHs1eED3QfddT79C_TOBDw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719284249</pqid></control><display><type>article</type><title>Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hui, Sonya ; Levy, Andrew S ; Slack, Daniel L ; Burnstein, Marcus J ; Errett, Lee ; Bonneau, Daniel ; Latter, David ; Rotstein, Ori D ; Bolz, Steffen-Sebastian ; Lidington, Darcy ; Voigtlaender-Bolz, Julia</creator><contributor>Cowart, Ashley</contributor><creatorcontrib>Hui, Sonya ; Levy, Andrew S ; Slack, Daniel L ; Burnstein, Marcus J ; Errett, Lee ; Bonneau, Daniel ; Latter, David ; Rotstein, Ori D ; Bolz, Steffen-Sebastian ; Lidington, Darcy ; Voigtlaender-Bolz, Julia ; Cowart, Ashley</creatorcontrib><description>We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0138142</identifier><identifier>PMID: 26367262</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Animal models ; Animals ; Arteries ; Cardiology ; Cardiovascular disease ; Conductance ; Coronary vessels ; Cystic fibrosis ; Cystic fibrosis transmembrane conductance regulator ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Female ; Heart diseases ; Heart failure ; Heart surgery ; Hospitals ; Human behavior ; Humans ; Laboratory animals ; Male ; Medicine ; Mesenteric Arteries - metabolism ; Mice ; Muscle Contraction - drug effects ; Muscle, Smooth, Vascular - metabolism ; Muscles ; Musculoskeletal system ; Phenylephrine ; Phosphates ; Physiology ; Pyrazoles - pharmacology ; Pyridines - pharmacology ; Receptors, Lysosphingolipid - antagonists &amp; inhibitors ; Regulators ; Regulatory sequences ; Resistance ; Rodents ; Science ; Signal Transduction - drug effects ; Signaling ; Skeletal muscle ; Sphingosine ; Sphingosine - metabolism ; Sphingosine 1-phosphate ; Stroke ; Surgery ; Task forces ; Translation ; Tumor necrosis factor-TNF ; Vascular Resistance - drug effects</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0138142-e0138142</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Hui et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Hui et al 2015 Hui et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1deafb1590edaa7cf3cd122f254e4b13a117b2d8841215dccfe95007b4df840d3</citedby><cites>FETCH-LOGICAL-c692t-1deafb1590edaa7cf3cd122f254e4b13a117b2d8841215dccfe95007b4df840d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1719284249/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1719284249?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26367262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cowart, Ashley</contributor><creatorcontrib>Hui, Sonya</creatorcontrib><creatorcontrib>Levy, Andrew S</creatorcontrib><creatorcontrib>Slack, Daniel L</creatorcontrib><creatorcontrib>Burnstein, Marcus J</creatorcontrib><creatorcontrib>Errett, Lee</creatorcontrib><creatorcontrib>Bonneau, Daniel</creatorcontrib><creatorcontrib>Latter, David</creatorcontrib><creatorcontrib>Rotstein, Ori D</creatorcontrib><creatorcontrib>Bolz, Steffen-Sebastian</creatorcontrib><creatorcontrib>Lidington, Darcy</creatorcontrib><creatorcontrib>Voigtlaender-Bolz, Julia</creatorcontrib><title>Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Animal models</subject><subject>Animals</subject><subject>Arteries</subject><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>Conductance</subject><subject>Coronary vessels</subject><subject>Cystic fibrosis</subject><subject>Cystic fibrosis transmembrane conductance regulator</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Female</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart surgery</subject><subject>Hospitals</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medicine</subject><subject>Mesenteric Arteries - metabolism</subject><subject>Mice</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Phenylephrine</subject><subject>Phosphates</subject><subject>Physiology</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyridines - pharmacology</subject><subject>Receptors, Lysosphingolipid - antagonists &amp; inhibitors</subject><subject>Regulators</subject><subject>Regulatory sequences</subject><subject>Resistance</subject><subject>Rodents</subject><subject>Science</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Sphingosine</subject><subject>Sphingosine - metabolism</subject><subject>Sphingosine 1-phosphate</subject><subject>Stroke</subject><subject>Surgery</subject><subject>Task forces</subject><subject>Translation</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vascular Resistance - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJwyOKvxM4FaVUBXamoqAtcjWNPEldZe4mTiv57vN202qAeUA6OXj_zjj2eSZKXGC0w5fjDlR97p7rF1jtYIEwFZuRRcoxLSrKCIPr44P8oeRbCFUI5FUXxNDkiBS04Kchx8mu9ba1rfLAOMpx9a33YtmqAdG2b6B630ktoxi5KIf164xtwVkcpxLTBXoODEFLr0rNxo9xOt2FQTkO67AfoLYTnyZNadQFeTOtJ8uPzp--nZ9n5xZfV6fI800VJhgwbUHWF8xKBUYrrmmqDCalJzoBVmCqMeUWMEAwTnButayhzhHjFTC0YMvQkeb333XY-yKk4QWKOSyIYYWUkVnvCeHUlt73dqP5GemXlreD7Rqp-sLoDGY0LXZWkMqhkNRcKogtRpjQ1Vxqz6PVxyjZWGzAa3NCrbmY633G2lY2_liwvylzQaPBuMuj97xHCIDc2aOg65cCPt-cmXCDKRETf_IM-fLuJalS8gHW1j3n1zlQuGRG54AjzSC0eoOJnYGN17KTaRn0W8H4WEJkB_gyNGkOQq_Xl_7MXP-fs2wO2BdUNbfDdONjYV3OQ7UHd-xB6qO-LjJHcDcJdNeRuEOQ0CDHs1eED3QfddT79C_TOBDw</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Hui, Sonya</creator><creator>Levy, Andrew S</creator><creator>Slack, Daniel L</creator><creator>Burnstein, Marcus J</creator><creator>Errett, Lee</creator><creator>Bonneau, Daniel</creator><creator>Latter, David</creator><creator>Rotstein, Ori D</creator><creator>Bolz, Steffen-Sebastian</creator><creator>Lidington, Darcy</creator><creator>Voigtlaender-Bolz, Julia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150914</creationdate><title>Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries</title><author>Hui, Sonya ; Levy, Andrew S ; Slack, Daniel L ; Burnstein, Marcus J ; Errett, Lee ; Bonneau, Daniel ; Latter, David ; Rotstein, Ori D ; Bolz, Steffen-Sebastian ; Lidington, Darcy ; Voigtlaender-Bolz, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1deafb1590edaa7cf3cd122f254e4b13a117b2d8841215dccfe95007b4df840d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Animal models</topic><topic>Animals</topic><topic>Arteries</topic><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>Conductance</topic><topic>Coronary vessels</topic><topic>Cystic fibrosis</topic><topic>Cystic fibrosis transmembrane conductance regulator</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Female</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart surgery</topic><topic>Hospitals</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medicine</topic><topic>Mesenteric Arteries - metabolism</topic><topic>Mice</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Phenylephrine</topic><topic>Phosphates</topic><topic>Physiology</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyridines - pharmacology</topic><topic>Receptors, Lysosphingolipid - antagonists &amp; inhibitors</topic><topic>Regulators</topic><topic>Regulatory sequences</topic><topic>Resistance</topic><topic>Rodents</topic><topic>Science</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Sphingosine</topic><topic>Sphingosine - metabolism</topic><topic>Sphingosine 1-phosphate</topic><topic>Stroke</topic><topic>Surgery</topic><topic>Task forces</topic><topic>Translation</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vascular Resistance - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Sonya</creatorcontrib><creatorcontrib>Levy, Andrew S</creatorcontrib><creatorcontrib>Slack, Daniel L</creatorcontrib><creatorcontrib>Burnstein, Marcus J</creatorcontrib><creatorcontrib>Errett, Lee</creatorcontrib><creatorcontrib>Bonneau, Daniel</creatorcontrib><creatorcontrib>Latter, David</creatorcontrib><creatorcontrib>Rotstein, Ori D</creatorcontrib><creatorcontrib>Bolz, Steffen-Sebastian</creatorcontrib><creatorcontrib>Lidington, Darcy</creatorcontrib><creatorcontrib>Voigtlaender-Bolz, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Sonya</au><au>Levy, Andrew S</au><au>Slack, Daniel L</au><au>Burnstein, Marcus J</au><au>Errett, Lee</au><au>Bonneau, Daniel</au><au>Latter, David</au><au>Rotstein, Ori D</au><au>Bolz, Steffen-Sebastian</au><au>Lidington, Darcy</au><au>Voigtlaender-Bolz, Julia</au><au>Cowart, Ashley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0138142</spage><epage>e0138142</epage><pages>e0138142-e0138142</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26367262</pmid><doi>10.1371/journal.pone.0138142</doi><tpages>e0138142</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0138142-e0138142
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719284249
source Publicly Available Content Database; PubMed Central
subjects Adolescent
Adult
Animal models
Animals
Arteries
Cardiology
Cardiovascular disease
Conductance
Coronary vessels
Cystic fibrosis
Cystic fibrosis transmembrane conductance regulator
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Female
Heart diseases
Heart failure
Heart surgery
Hospitals
Human behavior
Humans
Laboratory animals
Male
Medicine
Mesenteric Arteries - metabolism
Mice
Muscle Contraction - drug effects
Muscle, Smooth, Vascular - metabolism
Muscles
Musculoskeletal system
Phenylephrine
Phosphates
Physiology
Pyrazoles - pharmacology
Pyridines - pharmacology
Receptors, Lysosphingolipid - antagonists & inhibitors
Regulators
Regulatory sequences
Resistance
Rodents
Science
Signal Transduction - drug effects
Signaling
Skeletal muscle
Sphingosine
Sphingosine - metabolism
Sphingosine 1-phosphate
Stroke
Surgery
Task forces
Translation
Tumor necrosis factor-TNF
Vascular Resistance - drug effects
title Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingosine-1-Phosphate%20Signaling%20Regulates%20Myogenic%20Responsiveness%20in%20Human%20Resistance%20Arteries&rft.jtitle=PloS%20one&rft.au=Hui,%20Sonya&rft.date=2015-09-14&rft.volume=10&rft.issue=9&rft.spage=e0138142&rft.epage=e0138142&rft.pages=e0138142-e0138142&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0138142&rft_dat=%3Cgale_plos_%3EA428587017%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-1deafb1590edaa7cf3cd122f254e4b13a117b2d8841215dccfe95007b4df840d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1719284249&rft_id=info:pmid/26367262&rft_galeid=A428587017&rfr_iscdi=true