Loading…

Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions

In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-09, Vol.10 (9), p.e0138813-e0138813
Main Authors: Nakagawa, Gen, Kouzuma, Atsushi, Hirose, Atsumi, Kasai, Takuya, Yoshida, Gen, Watanabe, Kazuya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-316a59d983e0f2348bbd381c7be4a6282126b232ff970449b7930b4a9d6025213
cites cdi_FETCH-LOGICAL-c758t-316a59d983e0f2348bbd381c7be4a6282126b232ff970449b7930b4a9d6025213
container_end_page e0138813
container_issue 9
container_start_page e0138813
container_title PloS one
container_volume 10
creator Nakagawa, Gen
Kouzuma, Atsushi
Hirose, Atsumi
Kasai, Takuya
Yoshida, Gen
Watanabe, Kazuya
description In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode), the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.
doi_str_mv 10.1371/journal.pone.0138813
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1719292468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471193577</galeid><doaj_id>oai_doaj_org_article_134714193a3f4572bf319c3e48bd0f6c</doaj_id><sourcerecordid>A471193577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-316a59d983e0f2348bbd381c7be4a6282126b232ff970449b7930b4a9d6025213</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYmPwHyCIhITgISX-kTh5QZqqUSoNTVoZr5bjXFpXrl1shw3-etw2mxq0B5SHRPbnvnf3vVySvEb5BBGGPq1t74zQk601MMkRqSpEniSnqCY4K3FOnh59nyQvvF_neUGqsnyenOCS1BRjfJrcfYMgGquVTKcr4YQM4JQPSvrUdqlIZ7qX1kN2E5RWf5RZposV3AoDWos0ZlYtGK98ughOKJPOnL01aW9acOmFBhmcbSG7Br9Vbhc8taZVQVnjXybPOqE9vBreZ8nNl4vv06_Z5dVsPj2_zCQrqpARVIqibuuKQN5hQqumaUmFJGuAihJXGOGywQR3Xc1ySuuG1SRvqKjbMscFRuQseXvQ3Wrr-WCa54ihGteYllUk5geitWLNt05thPvNrVB8f2DdkgsXHdHAEaEM0WirIB0tGG46gmpJIJbV5l0po9bnIVvfbKCVYKIveiQ6vjFqxZf2F49qdZxhFPgwCDj7swcf-EZ5uXPbgO33dTPKKN7X_e4f9PHuBmopYgPKdDbmlTtRfh6bib0UjEVq8ggVnxY2SsY5dyqejwI-jgIiE-AuLEXvPZ8vrv-fvfoxZt8fsSsQOqy81f3-nxmD9ABKZ7130D2YjHK-W5B7N_huQfiwIDHszfGAHoLuN4L8BSXNCy0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719292468</pqid></control><display><type>article</type><title>Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Nakagawa, Gen ; Kouzuma, Atsushi ; Hirose, Atsumi ; Kasai, Takuya ; Yoshida, Gen ; Watanabe, Kazuya</creator><contributor>Cirino, Patrick C.</contributor><creatorcontrib>Nakagawa, Gen ; Kouzuma, Atsushi ; Hirose, Atsumi ; Kasai, Takuya ; Yoshida, Gen ; Watanabe, Kazuya ; Cirino, Patrick C.</creatorcontrib><description>In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode), the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0138813</identifier><identifier>PMID: 26394222</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetates - metabolism ; Acetic acid ; Bacteriological Techniques - instrumentation ; Bacteriological Techniques - methods ; Bioreactors ; Bioreactors - microbiology ; Carbohydrates ; Carbon ; E coli ; Electric properties ; Electrochemical Techniques - instrumentation ; Electrochemical Techniques - methods ; Electrochemistry ; Electrode potentials ; Electrodes ; Energy Metabolism ; Escherichia coli ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fermentation ; Fuel cells ; Gene expression ; Gene Expression Regulation, Bacterial ; Genetic Engineering ; Genomes ; Glucose ; Glucose - metabolism ; Glucose kinase ; Lactates ; Lactates - metabolism ; Lactic acid ; Life sciences ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Metabolic Networks and Pathways - genetics ; Metabolic pathways ; Metabolism ; Metabolites ; Microorganisms ; Oxidation-Reduction ; Permease ; Pharmacy ; Phosphotransferases - genetics ; Phosphotransferases - metabolism ; Pyruvic acid ; Reactors ; Respiration ; Reverse Transcriptase Polymerase Chain Reaction ; Shewanella - genetics ; Shewanella - metabolism ; Silver chloride ; Sugar ; Transcription ; Transcription (Genetics)</subject><ispartof>PloS one, 2015-09, Vol.10 (9), p.e0138813-e0138813</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Nakagawa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Nakagawa et al 2015 Nakagawa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-316a59d983e0f2348bbd381c7be4a6282126b232ff970449b7930b4a9d6025213</citedby><cites>FETCH-LOGICAL-c758t-316a59d983e0f2348bbd381c7be4a6282126b232ff970449b7930b4a9d6025213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1719292468/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1719292468?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26394222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cirino, Patrick C.</contributor><creatorcontrib>Nakagawa, Gen</creatorcontrib><creatorcontrib>Kouzuma, Atsushi</creatorcontrib><creatorcontrib>Hirose, Atsumi</creatorcontrib><creatorcontrib>Kasai, Takuya</creatorcontrib><creatorcontrib>Yoshida, Gen</creatorcontrib><creatorcontrib>Watanabe, Kazuya</creatorcontrib><title>Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode), the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.</description><subject>Acetates - metabolism</subject><subject>Acetic acid</subject><subject>Bacteriological Techniques - instrumentation</subject><subject>Bacteriological Techniques - methods</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>E coli</subject><subject>Electric properties</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemistry</subject><subject>Electrode potentials</subject><subject>Electrodes</subject><subject>Energy Metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fermentation</subject><subject>Fuel cells</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetic Engineering</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose kinase</subject><subject>Lactates</subject><subject>Lactates - metabolism</subject><subject>Lactic acid</subject><subject>Life sciences</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Oxidation-Reduction</subject><subject>Permease</subject><subject>Pharmacy</subject><subject>Phosphotransferases - genetics</subject><subject>Phosphotransferases - metabolism</subject><subject>Pyruvic acid</subject><subject>Reactors</subject><subject>Respiration</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Shewanella - genetics</subject><subject>Shewanella - metabolism</subject><subject>Silver chloride</subject><subject>Sugar</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYmPwHyCIhITgISX-kTh5QZqqUSoNTVoZr5bjXFpXrl1shw3-etw2mxq0B5SHRPbnvnf3vVySvEb5BBGGPq1t74zQk601MMkRqSpEniSnqCY4K3FOnh59nyQvvF_neUGqsnyenOCS1BRjfJrcfYMgGquVTKcr4YQM4JQPSvrUdqlIZ7qX1kN2E5RWf5RZposV3AoDWos0ZlYtGK98ughOKJPOnL01aW9acOmFBhmcbSG7Br9Vbhc8taZVQVnjXybPOqE9vBreZ8nNl4vv06_Z5dVsPj2_zCQrqpARVIqibuuKQN5hQqumaUmFJGuAihJXGOGywQR3Xc1ySuuG1SRvqKjbMscFRuQseXvQ3Wrr-WCa54ihGteYllUk5geitWLNt05thPvNrVB8f2DdkgsXHdHAEaEM0WirIB0tGG46gmpJIJbV5l0po9bnIVvfbKCVYKIveiQ6vjFqxZf2F49qdZxhFPgwCDj7swcf-EZ5uXPbgO33dTPKKN7X_e4f9PHuBmopYgPKdDbmlTtRfh6bib0UjEVq8ggVnxY2SsY5dyqejwI-jgIiE-AuLEXvPZ8vrv-fvfoxZt8fsSsQOqy81f3-nxmD9ABKZ7130D2YjHK-W5B7N_huQfiwIDHszfGAHoLuN4L8BSXNCy0</recordid><startdate>20150922</startdate><enddate>20150922</enddate><creator>Nakagawa, Gen</creator><creator>Kouzuma, Atsushi</creator><creator>Hirose, Atsumi</creator><creator>Kasai, Takuya</creator><creator>Yoshida, Gen</creator><creator>Watanabe, Kazuya</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150922</creationdate><title>Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions</title><author>Nakagawa, Gen ; Kouzuma, Atsushi ; Hirose, Atsumi ; Kasai, Takuya ; Yoshida, Gen ; Watanabe, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-316a59d983e0f2348bbd381c7be4a6282126b232ff970449b7930b4a9d6025213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetates - metabolism</topic><topic>Acetic acid</topic><topic>Bacteriological Techniques - instrumentation</topic><topic>Bacteriological Techniques - methods</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>E coli</topic><topic>Electric properties</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemistry</topic><topic>Electrode potentials</topic><topic>Electrodes</topic><topic>Energy Metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fermentation</topic><topic>Fuel cells</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetic Engineering</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose kinase</topic><topic>Lactates</topic><topic>Lactates - metabolism</topic><topic>Lactic acid</topic><topic>Life sciences</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Oxidation-Reduction</topic><topic>Permease</topic><topic>Pharmacy</topic><topic>Phosphotransferases - genetics</topic><topic>Phosphotransferases - metabolism</topic><topic>Pyruvic acid</topic><topic>Reactors</topic><topic>Respiration</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Shewanella - genetics</topic><topic>Shewanella - metabolism</topic><topic>Silver chloride</topic><topic>Sugar</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakagawa, Gen</creatorcontrib><creatorcontrib>Kouzuma, Atsushi</creatorcontrib><creatorcontrib>Hirose, Atsumi</creatorcontrib><creatorcontrib>Kasai, Takuya</creatorcontrib><creatorcontrib>Yoshida, Gen</creatorcontrib><creatorcontrib>Watanabe, Kazuya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakagawa, Gen</au><au>Kouzuma, Atsushi</au><au>Hirose, Atsumi</au><au>Kasai, Takuya</au><au>Yoshida, Gen</au><au>Watanabe, Kazuya</au><au>Cirino, Patrick C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-09-22</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>e0138813</spage><epage>e0138813</epage><pages>e0138813-e0138813</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode), the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26394222</pmid><doi>10.1371/journal.pone.0138813</doi><tpages>e0138813</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-09, Vol.10 (9), p.e0138813-e0138813
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1719292468
source PubMed (Medline); Publicly Available Content Database
subjects Acetates - metabolism
Acetic acid
Bacteriological Techniques - instrumentation
Bacteriological Techniques - methods
Bioreactors
Bioreactors - microbiology
Carbohydrates
Carbon
E coli
Electric properties
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
Electrochemistry
Electrode potentials
Electrodes
Energy Metabolism
Escherichia coli
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fermentation
Fuel cells
Gene expression
Gene Expression Regulation, Bacterial
Genetic Engineering
Genomes
Glucose
Glucose - metabolism
Glucose kinase
Lactates
Lactates - metabolism
Lactic acid
Life sciences
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Metabolic Networks and Pathways - genetics
Metabolic pathways
Metabolism
Metabolites
Microorganisms
Oxidation-Reduction
Permease
Pharmacy
Phosphotransferases - genetics
Phosphotransferases - metabolism
Pyruvic acid
Reactors
Respiration
Reverse Transcriptase Polymerase Chain Reaction
Shewanella - genetics
Shewanella - metabolism
Silver chloride
Sugar
Transcription
Transcription (Genetics)
title Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Characteristics%20of%20a%20Glucose-Utilizing%20Shewanella%20oneidensis%20Strain%20Grown%20under%20Electrode-Respiring%20Conditions&rft.jtitle=PloS%20one&rft.au=Nakagawa,%20Gen&rft.date=2015-09-22&rft.volume=10&rft.issue=9&rft.spage=e0138813&rft.epage=e0138813&rft.pages=e0138813-e0138813&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0138813&rft_dat=%3Cgale_plos_%3EA471193577%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-316a59d983e0f2348bbd381c7be4a6282126b232ff970449b7930b4a9d6025213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1719292468&rft_id=info:pmid/26394222&rft_galeid=A471193577&rfr_iscdi=true