Loading…

Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling

The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active s...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2015-08, Vol.11 (8), p.e1005473-e1005473
Main Authors: Marada, Suresh, Navarro, Gemma, Truong, Ashley, Stewart, Daniel P, Arensdorf, Angela M, Nachtergaele, Sigrid, Angelats, Edgar, Opferman, Joseph T, Rohatgi, Rajat, McCormick, Peter J, Ogden, Stacey K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63
cites cdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63
container_end_page e1005473
container_issue 8
container_start_page e1005473
container_title PLoS genetics
container_volume 11
creator Marada, Suresh
Navarro, Gemma
Truong, Ashley
Stewart, Daniel P
Arensdorf, Angela M
Nachtergaele, Sigrid
Angelats, Edgar
Opferman, Joseph T
Rohatgi, Rajat
McCormick, Peter J
Ogden, Stacey K
description The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.
doi_str_mv 10.1371/journal.pgen.1005473
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720614289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430963764</galeid><doaj_id>oai_doaj_org_article_4c423f7fb3a84caa9fc72b796bf9aaa3</doaj_id><sourcerecordid>A430963764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwDxBEQkJw0eKv2MkN0jTYqFRt0grcWo5jpy6u3dnJRP89zppVrcQFKIpiHz_v6xz7nCx7DcEUYgY_rXwfnLDTTavcFAJQEIafZKewKPCEEUCeHoxPshcxrgDARVmx59kJoqiCpChPs8Vl72RnfHLKv5h7FZKbVLlxebdU-a23Kvc6v57MjfulmvzKbqWPWysGyUAt1t4n0qW1hWmTi3Hty-yZFjaqV-P3LPtx-fX7xbfJ_OZqdnE-n8gS0G5CSU2E1AUCDS60gIzBgjaY1bCAtQYCYFmgCtWkIRBJLQDEKVjpqoElbhqKz7K3O9-N9ZGP5xE5ZAhQSFBZJWK2IxovVnwTzFqELffC8IeADy0XoTPSKk4kQVgzXWNREilEpSVDNatorSshBE5en8fd-nqtGqlcF4Q9Mj1ecWbJW3_PSUEoAYMB3BnI2EselFRBiu5BuJ8MLwIMcVTSohpS_DBuGvxdr2LH1yZKZa1wyvdDroAmntAh13c7tBUpHeO0T38hB5yfEwySGaMkUdO_UOlp1NpI75Q2KX4k-HgkSEynfnet6GPks8Xtf7DX_87e_Dxm3x-wSyVst4ze9kMRxmOQjEccfIxB6f31QMCHrnmsEj50DR-7JsneHF7tXvTYJvgP_rERCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706207469</pqid></control><display><type>article</type><title>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Marada, Suresh ; Navarro, Gemma ; Truong, Ashley ; Stewart, Daniel P ; Arensdorf, Angela M ; Nachtergaele, Sigrid ; Angelats, Edgar ; Opferman, Joseph T ; Rohatgi, Rajat ; McCormick, Peter J ; Ogden, Stacey K</creator><contributor>Robbins, David J.</contributor><creatorcontrib>Marada, Suresh ; Navarro, Gemma ; Truong, Ashley ; Stewart, Daniel P ; Arensdorf, Angela M ; Nachtergaele, Sigrid ; Angelats, Edgar ; Opferman, Joseph T ; Rohatgi, Rajat ; McCormick, Peter J ; Ogden, Stacey K ; Robbins, David J.</creatorcontrib><description>The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005473</identifier><identifier>PMID: 26291458</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Animals ; Bias ; Cell adhesion &amp; migration ; Cellular signal transduction ; Chemical bonds ; Conserved Sequence ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; Experiments ; G Proteins ; Gene expression ; Glycosylation ; HEK293 Cells ; Humans ; Insects ; Ligands ; Localization ; Membrane proteins ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Observations ; Physiological aspects ; Protein Binding ; Protein Processing, Post-Translational ; Protein Transport ; Proteins ; Proteïnes de membrana ; Proteïnes G ; Receptors, G-Protein-Coupled - metabolism ; Rodents ; Signal Transduction ; Smoothened Receptor ; Species Specificity ; Vertebrates ; Vertebrats</subject><ispartof>PLoS genetics, 2015-08, Vol.11 (8), p.e1005473-e1005473</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>cc-by (c) Marada, Suresh et al., 2015 info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es"&gt;http://creativecommons.org/licenses/by/3.0/es&lt;/a&gt;</rights><rights>2015 Marada et al 2015 Marada et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Marada S, Navarro G, Truong A, Stewart DP, Arensdorf AM, Nachtergaele S, et al. (2015) Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLoS Genet 11(8): e1005473. doi:10.1371/journal.pgen.1005473</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</citedby><cites>FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546403/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26291458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robbins, David J.</contributor><creatorcontrib>Marada, Suresh</creatorcontrib><creatorcontrib>Navarro, Gemma</creatorcontrib><creatorcontrib>Truong, Ashley</creatorcontrib><creatorcontrib>Stewart, Daniel P</creatorcontrib><creatorcontrib>Arensdorf, Angela M</creatorcontrib><creatorcontrib>Nachtergaele, Sigrid</creatorcontrib><creatorcontrib>Angelats, Edgar</creatorcontrib><creatorcontrib>Opferman, Joseph T</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>McCormick, Peter J</creatorcontrib><creatorcontrib>Ogden, Stacey K</creatorcontrib><title>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bias</subject><subject>Cell adhesion &amp; migration</subject><subject>Cellular signal transduction</subject><subject>Chemical bonds</subject><subject>Conserved Sequence</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>Experiments</subject><subject>G Proteins</subject><subject>Gene expression</subject><subject>Glycosylation</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Insects</subject><subject>Ligands</subject><subject>Localization</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>NIH 3T3 Cells</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Proteïnes de membrana</subject><subject>Proteïnes G</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Smoothened Receptor</subject><subject>Species Specificity</subject><subject>Vertebrates</subject><subject>Vertebrats</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwDxBEQkJw0eKv2MkN0jTYqFRt0grcWo5jpy6u3dnJRP89zppVrcQFKIpiHz_v6xz7nCx7DcEUYgY_rXwfnLDTTavcFAJQEIafZKewKPCEEUCeHoxPshcxrgDARVmx59kJoqiCpChPs8Vl72RnfHLKv5h7FZKbVLlxebdU-a23Kvc6v57MjfulmvzKbqWPWysGyUAt1t4n0qW1hWmTi3Hty-yZFjaqV-P3LPtx-fX7xbfJ_OZqdnE-n8gS0G5CSU2E1AUCDS60gIzBgjaY1bCAtQYCYFmgCtWkIRBJLQDEKVjpqoElbhqKz7K3O9-N9ZGP5xE5ZAhQSFBZJWK2IxovVnwTzFqELffC8IeADy0XoTPSKk4kQVgzXWNREilEpSVDNatorSshBE5en8fd-nqtGqlcF4Q9Mj1ecWbJW3_PSUEoAYMB3BnI2EselFRBiu5BuJ8MLwIMcVTSohpS_DBuGvxdr2LH1yZKZa1wyvdDroAmntAh13c7tBUpHeO0T38hB5yfEwySGaMkUdO_UOlp1NpI75Q2KX4k-HgkSEynfnet6GPks8Xtf7DX_87e_Dxm3x-wSyVst4ze9kMRxmOQjEccfIxB6f31QMCHrnmsEj50DR-7JsneHF7tXvTYJvgP_rERCQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Marada, Suresh</creator><creator>Navarro, Gemma</creator><creator>Truong, Ashley</creator><creator>Stewart, Daniel P</creator><creator>Arensdorf, Angela M</creator><creator>Nachtergaele, Sigrid</creator><creator>Angelats, Edgar</creator><creator>Opferman, Joseph T</creator><creator>Rohatgi, Rajat</creator><creator>McCormick, Peter J</creator><creator>Ogden, Stacey K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150801</creationdate><title>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</title><author>Marada, Suresh ; Navarro, Gemma ; Truong, Ashley ; Stewart, Daniel P ; Arensdorf, Angela M ; Nachtergaele, Sigrid ; Angelats, Edgar ; Opferman, Joseph T ; Rohatgi, Rajat ; McCormick, Peter J ; Ogden, Stacey K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bias</topic><topic>Cell adhesion &amp; migration</topic><topic>Cellular signal transduction</topic><topic>Chemical bonds</topic><topic>Conserved Sequence</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>Experiments</topic><topic>G Proteins</topic><topic>Gene expression</topic><topic>Glycosylation</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Insects</topic><topic>Ligands</topic><topic>Localization</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>NIH 3T3 Cells</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Proteïnes de membrana</topic><topic>Proteïnes G</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Smoothened Receptor</topic><topic>Species Specificity</topic><topic>Vertebrates</topic><topic>Vertebrats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marada, Suresh</creatorcontrib><creatorcontrib>Navarro, Gemma</creatorcontrib><creatorcontrib>Truong, Ashley</creatorcontrib><creatorcontrib>Stewart, Daniel P</creatorcontrib><creatorcontrib>Arensdorf, Angela M</creatorcontrib><creatorcontrib>Nachtergaele, Sigrid</creatorcontrib><creatorcontrib>Angelats, Edgar</creatorcontrib><creatorcontrib>Opferman, Joseph T</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>McCormick, Peter J</creatorcontrib><creatorcontrib>Ogden, Stacey K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marada, Suresh</au><au>Navarro, Gemma</au><au>Truong, Ashley</au><au>Stewart, Daniel P</au><au>Arensdorf, Angela M</au><au>Nachtergaele, Sigrid</au><au>Angelats, Edgar</au><au>Opferman, Joseph T</au><au>Rohatgi, Rajat</au><au>McCormick, Peter J</au><au>Ogden, Stacey K</au><au>Robbins, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>11</volume><issue>8</issue><spage>e1005473</spage><epage>e1005473</epage><pages>e1005473-e1005473</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26291458</pmid><doi>10.1371/journal.pgen.1005473</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2015-08, Vol.11 (8), p.e1005473-e1005473
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1720614289
source PubMed Central Free; Publicly Available Content Database
subjects Amino Acid Sequence
Animals
Bias
Cell adhesion & migration
Cellular signal transduction
Chemical bonds
Conserved Sequence
Drosophila melanogaster
Drosophila Proteins - metabolism
Experiments
G Proteins
Gene expression
Glycosylation
HEK293 Cells
Humans
Insects
Ligands
Localization
Membrane proteins
Mice
Molecular Sequence Data
NIH 3T3 Cells
Observations
Physiological aspects
Protein Binding
Protein Processing, Post-Translational
Protein Transport
Proteins
Proteïnes de membrana
Proteïnes G
Receptors, G-Protein-Coupled - metabolism
Rodents
Signal Transduction
Smoothened Receptor
Species Specificity
Vertebrates
Vertebrats
title Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Divergence%20in%20the%20Role%20of%20N-Linked%20Glycosylation%20in%20Smoothened%20Signaling&rft.jtitle=PLoS%20genetics&rft.au=Marada,%20Suresh&rft.date=2015-08-01&rft.volume=11&rft.issue=8&rft.spage=e1005473&rft.epage=e1005473&rft.pages=e1005473-e1005473&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005473&rft_dat=%3Cgale_plos_%3EA430963764%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1706207469&rft_id=info:pmid/26291458&rft_galeid=A430963764&rfr_iscdi=true