Loading…
Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active s...
Saved in:
Published in: | PLoS genetics 2015-08, Vol.11 (8), p.e1005473-e1005473 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63 |
---|---|
cites | cdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63 |
container_end_page | e1005473 |
container_issue | 8 |
container_start_page | e1005473 |
container_title | PLoS genetics |
container_volume | 11 |
creator | Marada, Suresh Navarro, Gemma Truong, Ashley Stewart, Daniel P Arensdorf, Angela M Nachtergaele, Sigrid Angelats, Edgar Opferman, Joseph T Rohatgi, Rajat McCormick, Peter J Ogden, Stacey K |
description | The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice. |
doi_str_mv | 10.1371/journal.pgen.1005473 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1720614289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A430963764</galeid><doaj_id>oai_doaj_org_article_4c423f7fb3a84caa9fc72b796bf9aaa3</doaj_id><sourcerecordid>A430963764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwDxBEQkJw0eKv2MkN0jTYqFRt0grcWo5jpy6u3dnJRP89zppVrcQFKIpiHz_v6xz7nCx7DcEUYgY_rXwfnLDTTavcFAJQEIafZKewKPCEEUCeHoxPshcxrgDARVmx59kJoqiCpChPs8Vl72RnfHLKv5h7FZKbVLlxebdU-a23Kvc6v57MjfulmvzKbqWPWysGyUAt1t4n0qW1hWmTi3Hty-yZFjaqV-P3LPtx-fX7xbfJ_OZqdnE-n8gS0G5CSU2E1AUCDS60gIzBgjaY1bCAtQYCYFmgCtWkIRBJLQDEKVjpqoElbhqKz7K3O9-N9ZGP5xE5ZAhQSFBZJWK2IxovVnwTzFqELffC8IeADy0XoTPSKk4kQVgzXWNREilEpSVDNatorSshBE5en8fd-nqtGqlcF4Q9Mj1ecWbJW3_PSUEoAYMB3BnI2EselFRBiu5BuJ8MLwIMcVTSohpS_DBuGvxdr2LH1yZKZa1wyvdDroAmntAh13c7tBUpHeO0T38hB5yfEwySGaMkUdO_UOlp1NpI75Q2KX4k-HgkSEynfnet6GPks8Xtf7DX_87e_Dxm3x-wSyVst4ze9kMRxmOQjEccfIxB6f31QMCHrnmsEj50DR-7JsneHF7tXvTYJvgP_rERCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706207469</pqid></control><display><type>article</type><title>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Marada, Suresh ; Navarro, Gemma ; Truong, Ashley ; Stewart, Daniel P ; Arensdorf, Angela M ; Nachtergaele, Sigrid ; Angelats, Edgar ; Opferman, Joseph T ; Rohatgi, Rajat ; McCormick, Peter J ; Ogden, Stacey K</creator><contributor>Robbins, David J.</contributor><creatorcontrib>Marada, Suresh ; Navarro, Gemma ; Truong, Ashley ; Stewart, Daniel P ; Arensdorf, Angela M ; Nachtergaele, Sigrid ; Angelats, Edgar ; Opferman, Joseph T ; Rohatgi, Rajat ; McCormick, Peter J ; Ogden, Stacey K ; Robbins, David J.</creatorcontrib><description>The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005473</identifier><identifier>PMID: 26291458</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Animals ; Bias ; Cell adhesion & migration ; Cellular signal transduction ; Chemical bonds ; Conserved Sequence ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; Experiments ; G Proteins ; Gene expression ; Glycosylation ; HEK293 Cells ; Humans ; Insects ; Ligands ; Localization ; Membrane proteins ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Observations ; Physiological aspects ; Protein Binding ; Protein Processing, Post-Translational ; Protein Transport ; Proteins ; Proteïnes de membrana ; Proteïnes G ; Receptors, G-Protein-Coupled - metabolism ; Rodents ; Signal Transduction ; Smoothened Receptor ; Species Specificity ; Vertebrates ; Vertebrats</subject><ispartof>PLoS genetics, 2015-08, Vol.11 (8), p.e1005473-e1005473</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>cc-by (c) Marada, Suresh et al., 2015 info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es">http://creativecommons.org/licenses/by/3.0/es</a></rights><rights>2015 Marada et al 2015 Marada et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Marada S, Navarro G, Truong A, Stewart DP, Arensdorf AM, Nachtergaele S, et al. (2015) Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLoS Genet 11(8): e1005473. doi:10.1371/journal.pgen.1005473</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</citedby><cites>FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546403/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26291458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robbins, David J.</contributor><creatorcontrib>Marada, Suresh</creatorcontrib><creatorcontrib>Navarro, Gemma</creatorcontrib><creatorcontrib>Truong, Ashley</creatorcontrib><creatorcontrib>Stewart, Daniel P</creatorcontrib><creatorcontrib>Arensdorf, Angela M</creatorcontrib><creatorcontrib>Nachtergaele, Sigrid</creatorcontrib><creatorcontrib>Angelats, Edgar</creatorcontrib><creatorcontrib>Opferman, Joseph T</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>McCormick, Peter J</creatorcontrib><creatorcontrib>Ogden, Stacey K</creatorcontrib><title>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bias</subject><subject>Cell adhesion & migration</subject><subject>Cellular signal transduction</subject><subject>Chemical bonds</subject><subject>Conserved Sequence</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>Experiments</subject><subject>G Proteins</subject><subject>Gene expression</subject><subject>Glycosylation</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Insects</subject><subject>Ligands</subject><subject>Localization</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>NIH 3T3 Cells</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Proteïnes de membrana</subject><subject>Proteïnes G</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Smoothened Receptor</subject><subject>Species Specificity</subject><subject>Vertebrates</subject><subject>Vertebrats</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwDxBEQkJw0eKv2MkN0jTYqFRt0grcWo5jpy6u3dnJRP89zppVrcQFKIpiHz_v6xz7nCx7DcEUYgY_rXwfnLDTTavcFAJQEIafZKewKPCEEUCeHoxPshcxrgDARVmx59kJoqiCpChPs8Vl72RnfHLKv5h7FZKbVLlxebdU-a23Kvc6v57MjfulmvzKbqWPWysGyUAt1t4n0qW1hWmTi3Hty-yZFjaqV-P3LPtx-fX7xbfJ_OZqdnE-n8gS0G5CSU2E1AUCDS60gIzBgjaY1bCAtQYCYFmgCtWkIRBJLQDEKVjpqoElbhqKz7K3O9-N9ZGP5xE5ZAhQSFBZJWK2IxovVnwTzFqELffC8IeADy0XoTPSKk4kQVgzXWNREilEpSVDNatorSshBE5en8fd-nqtGqlcF4Q9Mj1ecWbJW3_PSUEoAYMB3BnI2EselFRBiu5BuJ8MLwIMcVTSohpS_DBuGvxdr2LH1yZKZa1wyvdDroAmntAh13c7tBUpHeO0T38hB5yfEwySGaMkUdO_UOlp1NpI75Q2KX4k-HgkSEynfnet6GPks8Xtf7DX_87e_Dxm3x-wSyVst4ze9kMRxmOQjEccfIxB6f31QMCHrnmsEj50DR-7JsneHF7tXvTYJvgP_rERCQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Marada, Suresh</creator><creator>Navarro, Gemma</creator><creator>Truong, Ashley</creator><creator>Stewart, Daniel P</creator><creator>Arensdorf, Angela M</creator><creator>Nachtergaele, Sigrid</creator><creator>Angelats, Edgar</creator><creator>Opferman, Joseph T</creator><creator>Rohatgi, Rajat</creator><creator>McCormick, Peter J</creator><creator>Ogden, Stacey K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150801</creationdate><title>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</title><author>Marada, Suresh ; Navarro, Gemma ; Truong, Ashley ; Stewart, Daniel P ; Arensdorf, Angela M ; Nachtergaele, Sigrid ; Angelats, Edgar ; Opferman, Joseph T ; Rohatgi, Rajat ; McCormick, Peter J ; Ogden, Stacey K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bias</topic><topic>Cell adhesion & migration</topic><topic>Cellular signal transduction</topic><topic>Chemical bonds</topic><topic>Conserved Sequence</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>Experiments</topic><topic>G Proteins</topic><topic>Gene expression</topic><topic>Glycosylation</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Insects</topic><topic>Ligands</topic><topic>Localization</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>NIH 3T3 Cells</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Proteïnes de membrana</topic><topic>Proteïnes G</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Smoothened Receptor</topic><topic>Species Specificity</topic><topic>Vertebrates</topic><topic>Vertebrats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marada, Suresh</creatorcontrib><creatorcontrib>Navarro, Gemma</creatorcontrib><creatorcontrib>Truong, Ashley</creatorcontrib><creatorcontrib>Stewart, Daniel P</creatorcontrib><creatorcontrib>Arensdorf, Angela M</creatorcontrib><creatorcontrib>Nachtergaele, Sigrid</creatorcontrib><creatorcontrib>Angelats, Edgar</creatorcontrib><creatorcontrib>Opferman, Joseph T</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>McCormick, Peter J</creatorcontrib><creatorcontrib>Ogden, Stacey K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marada, Suresh</au><au>Navarro, Gemma</au><au>Truong, Ashley</au><au>Stewart, Daniel P</au><au>Arensdorf, Angela M</au><au>Nachtergaele, Sigrid</au><au>Angelats, Edgar</au><au>Opferman, Joseph T</au><au>Rohatgi, Rajat</au><au>McCormick, Peter J</au><au>Ogden, Stacey K</au><au>Robbins, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>11</volume><issue>8</issue><spage>e1005473</spage><epage>e1005473</epage><pages>e1005473-e1005473</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26291458</pmid><doi>10.1371/journal.pgen.1005473</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2015-08, Vol.11 (8), p.e1005473-e1005473 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1720614289 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Amino Acid Sequence Animals Bias Cell adhesion & migration Cellular signal transduction Chemical bonds Conserved Sequence Drosophila melanogaster Drosophila Proteins - metabolism Experiments G Proteins Gene expression Glycosylation HEK293 Cells Humans Insects Ligands Localization Membrane proteins Mice Molecular Sequence Data NIH 3T3 Cells Observations Physiological aspects Protein Binding Protein Processing, Post-Translational Protein Transport Proteins Proteïnes de membrana Proteïnes G Receptors, G-Protein-Coupled - metabolism Rodents Signal Transduction Smoothened Receptor Species Specificity Vertebrates Vertebrats |
title | Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Divergence%20in%20the%20Role%20of%20N-Linked%20Glycosylation%20in%20Smoothened%20Signaling&rft.jtitle=PLoS%20genetics&rft.au=Marada,%20Suresh&rft.date=2015-08-01&rft.volume=11&rft.issue=8&rft.spage=e1005473&rft.epage=e1005473&rft.pages=e1005473-e1005473&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005473&rft_dat=%3Cgale_plos_%3EA430963764%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c806t-64b4acf520d35fa177156d37b151bf0a03c5292b4d412cfa0130a09f9d183dd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1706207469&rft_id=info:pmid/26291458&rft_galeid=A430963764&rfr_iscdi=true |