Loading…
The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3
The Skp1-Cul1-F-box protein (SCF) complex catalyzes protein ubiquitination in diverse cellular processes and is one of the best-characterized ubiquitin ligases. F-box proteins determine the substrate specificities of SCF ubiquitin ligases. Among these, Fbs1/FBG1/FBXO2, Fbs2/FBG2/FBXO6, and Fbs3/FBG5...
Saved in:
Published in: | PloS one 2015-10, Vol.10 (10), p.e0140366-e0140366 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c688t-ca542997f6bbe5fd1b517c961e5e8136ceaa51b9188490bea1c18a8a1ce5cc5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c688t-ca542997f6bbe5fd1b517c961e5e8136ceaa51b9188490bea1c18a8a1ce5cc5e3 |
container_end_page | e0140366 |
container_issue | 10 |
container_start_page | e0140366 |
container_title | PloS one |
container_volume | 10 |
creator | Kumanomidou, Taichi Nishio, Kazuya Takagi, Kenji Nakagawa, Tomomi Suzuki, Atsuo Yamane, Takashi Tokunaga, Fuminori Iwai, Kazuhiro Murakami, Arisa Yoshida, Yukiko Tanaka, Keiji Mizushima, Tsunehiro |
description | The Skp1-Cul1-F-box protein (SCF) complex catalyzes protein ubiquitination in diverse cellular processes and is one of the best-characterized ubiquitin ligases. F-box proteins determine the substrate specificities of SCF ubiquitin ligases. Among these, Fbs1/FBG1/FBXO2, Fbs2/FBG2/FBXO6, and Fbs3/FBG5/FBXO27 recognize the N-glycans of glycoproteins, whereas FBG3/FBXO44 has no sugar-binding activity, despite the high sequence homology and conservation of the residues necessary for oligosaccharide binding between Fbs1-3 and FBG3. Here we determined the crystal structure of the Skp1-FBG3 complex at a resolution of 2.6 Å. The substrate-binding domain of FBG3 is composed of a 10-stranded antiparallel β-sandwich with three helices. Although the overall structure of FBG3 is similar to that of Fbs1, the residues that form the Fbs1 carbohydrate-binding pocket failed to be superposed with the corresponding residues of FBG3. Structure-based mutational analysis shows that distinct hydrogen bond networks of four FBG3 loops, i.e., β2-β3, β5-β6, β7-β8, and β9-β10, prevent the formation of the carbohydrate-binding pocket shown in Fbs1. |
doi_str_mv | 10.1371/journal.pone.0140366 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1721911217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431491300</galeid><doaj_id>oai_doaj_org_article_ad4c2d6bf8a241b0a65ef102661646e9</doaj_id><sourcerecordid>A431491300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c688t-ca542997f6bbe5fd1b517c961e5e8136ceaa51b9188490bea1c18a8a1ce5cc5e3</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0OKLHSd5QdoG7SpNGqKDV8txLq2rJC62A9u3x6XZaNAekB9snX_3P_tvXxS9BDIFmsGHjeltJ5vp1nQ4JcAI5fxRdAwFTSY8IfTxwfooeubchpCU5pw_jY4SzjjhAMdRe73GeOltr3xvZRN_0nWNFjuFLi7R_0LsYhnPm1tlttZ41F283KLStVbxbHJmbuIvQ3hWOohlV8UL7-IL05rGrEzv_u6fzenz6EktG4cvhvkk-jb7fH1-Mbm8mi_OTy8niue5nyiZsqQospqXJaZ1BWUKmSo4YIo5UK5QyhTKAvKcFaRECQpymYcJU6VSpCfR673utjFODE45AVkCBUACWSAWe6IyciO2VrfS3gojtfgTMHYlpPVaNShkxVRS8bLOZcKgJJKnWANJOIdgIxZB6-NQrS9brBR2Plg5Eh3vdHotVuanCI9As2J3mHeDgDU_enRetNopbBrZYbBwd-6EJZQxCOibf9CHbzdQKxkuoLvahLpqJypOGQVWACUkUNMHqDAqbLUK36rWIT5KeD9KCIzHG7-SvXNisfz6_-zV9zH79oBdo2z82pmm99p0bgyyPaiscc5ifW8yELHrijs3xK4rxNAVIe3V4QPdJ921Af0NaZkGgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721911217</pqid></control><display><type>article</type><title>The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kumanomidou, Taichi ; Nishio, Kazuya ; Takagi, Kenji ; Nakagawa, Tomomi ; Suzuki, Atsuo ; Yamane, Takashi ; Tokunaga, Fuminori ; Iwai, Kazuhiro ; Murakami, Arisa ; Yoshida, Yukiko ; Tanaka, Keiji ; Mizushima, Tsunehiro</creator><creatorcontrib>Kumanomidou, Taichi ; Nishio, Kazuya ; Takagi, Kenji ; Nakagawa, Tomomi ; Suzuki, Atsuo ; Yamane, Takashi ; Tokunaga, Fuminori ; Iwai, Kazuhiro ; Murakami, Arisa ; Yoshida, Yukiko ; Tanaka, Keiji ; Mizushima, Tsunehiro</creatorcontrib><description>The Skp1-Cul1-F-box protein (SCF) complex catalyzes protein ubiquitination in diverse cellular processes and is one of the best-characterized ubiquitin ligases. F-box proteins determine the substrate specificities of SCF ubiquitin ligases. Among these, Fbs1/FBG1/FBXO2, Fbs2/FBG2/FBXO6, and Fbs3/FBG5/FBXO27 recognize the N-glycans of glycoproteins, whereas FBG3/FBXO44 has no sugar-binding activity, despite the high sequence homology and conservation of the residues necessary for oligosaccharide binding between Fbs1-3 and FBG3. Here we determined the crystal structure of the Skp1-FBG3 complex at a resolution of 2.6 Å. The substrate-binding domain of FBG3 is composed of a 10-stranded antiparallel β-sandwich with three helices. Although the overall structure of FBG3 is similar to that of Fbs1, the residues that form the Fbs1 carbohydrate-binding pocket failed to be superposed with the corresponding residues of FBG3. Structure-based mutational analysis shows that distinct hydrogen bond networks of four FBG3 loops, i.e., β2-β3, β5-β6, β7-β8, and β9-β10, prevent the formation of the carbohydrate-binding pocket shown in Fbs1.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0140366</identifier><identifier>PMID: 26460611</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Analysis ; Binding ; Carbohydrates ; Cascades (Fluid dynamics) ; Cell Cycle Proteins - chemistry ; Conservation ; Conserved sequence ; Crystal structure ; Crystallography, X-Ray ; F-box protein ; F-Box Proteins - chemistry ; F-Box Proteins - genetics ; Glycoproteins ; Glycoproteins - metabolism ; Helices ; Homology ; Humans ; Hydrogen ; Hydrogen bonds ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins - metabolism ; Mutation - genetics ; N-glycans ; Nerve Tissue Proteins - chemistry ; Next-generation sequencing ; Polysaccharides ; Protein Binding ; Protein Structure, Tertiary ; Proteins ; Residues ; Ribonucleases - metabolism ; S-Phase Kinase-Associated Proteins - chemistry ; Sequence Homology, Amino Acid ; Substrate Specificity ; Substrates ; Sugar ; Ubiquitin ; Ubiquitin-proteasome system ; Ubiquitination</subject><ispartof>PloS one, 2015-10, Vol.10 (10), p.e0140366-e0140366</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Kumanomidou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Kumanomidou et al 2015 Kumanomidou et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c688t-ca542997f6bbe5fd1b517c961e5e8136ceaa51b9188490bea1c18a8a1ce5cc5e3</citedby><cites>FETCH-LOGICAL-c688t-ca542997f6bbe5fd1b517c961e5e8136ceaa51b9188490bea1c18a8a1ce5cc5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1721911217/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1721911217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26460611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumanomidou, Taichi</creatorcontrib><creatorcontrib>Nishio, Kazuya</creatorcontrib><creatorcontrib>Takagi, Kenji</creatorcontrib><creatorcontrib>Nakagawa, Tomomi</creatorcontrib><creatorcontrib>Suzuki, Atsuo</creatorcontrib><creatorcontrib>Yamane, Takashi</creatorcontrib><creatorcontrib>Tokunaga, Fuminori</creatorcontrib><creatorcontrib>Iwai, Kazuhiro</creatorcontrib><creatorcontrib>Murakami, Arisa</creatorcontrib><creatorcontrib>Yoshida, Yukiko</creatorcontrib><creatorcontrib>Tanaka, Keiji</creatorcontrib><creatorcontrib>Mizushima, Tsunehiro</creatorcontrib><title>The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Skp1-Cul1-F-box protein (SCF) complex catalyzes protein ubiquitination in diverse cellular processes and is one of the best-characterized ubiquitin ligases. F-box proteins determine the substrate specificities of SCF ubiquitin ligases. Among these, Fbs1/FBG1/FBXO2, Fbs2/FBG2/FBXO6, and Fbs3/FBG5/FBXO27 recognize the N-glycans of glycoproteins, whereas FBG3/FBXO44 has no sugar-binding activity, despite the high sequence homology and conservation of the residues necessary for oligosaccharide binding between Fbs1-3 and FBG3. Here we determined the crystal structure of the Skp1-FBG3 complex at a resolution of 2.6 Å. The substrate-binding domain of FBG3 is composed of a 10-stranded antiparallel β-sandwich with three helices. Although the overall structure of FBG3 is similar to that of Fbs1, the residues that form the Fbs1 carbohydrate-binding pocket failed to be superposed with the corresponding residues of FBG3. Structure-based mutational analysis shows that distinct hydrogen bond networks of four FBG3 loops, i.e., β2-β3, β5-β6, β7-β8, and β9-β10, prevent the formation of the carbohydrate-binding pocket shown in Fbs1.</description><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Binding</subject><subject>Carbohydrates</subject><subject>Cascades (Fluid dynamics)</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Conservation</subject><subject>Conserved sequence</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>F-box protein</subject><subject>F-Box Proteins - chemistry</subject><subject>F-Box Proteins - genetics</subject><subject>Glycoproteins</subject><subject>Glycoproteins - metabolism</subject><subject>Helices</subject><subject>Homology</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation - genetics</subject><subject>N-glycans</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Next-generation sequencing</subject><subject>Polysaccharides</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Residues</subject><subject>Ribonucleases - metabolism</subject><subject>S-Phase Kinase-Associated Proteins - chemistry</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Ubiquitin</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitination</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0OKLHSd5QdoG7SpNGqKDV8txLq2rJC62A9u3x6XZaNAekB9snX_3P_tvXxS9BDIFmsGHjeltJ5vp1nQ4JcAI5fxRdAwFTSY8IfTxwfooeubchpCU5pw_jY4SzjjhAMdRe73GeOltr3xvZRN_0nWNFjuFLi7R_0LsYhnPm1tlttZ41F283KLStVbxbHJmbuIvQ3hWOohlV8UL7-IL05rGrEzv_u6fzenz6EktG4cvhvkk-jb7fH1-Mbm8mi_OTy8niue5nyiZsqQospqXJaZ1BWUKmSo4YIo5UK5QyhTKAvKcFaRECQpymYcJU6VSpCfR673utjFODE45AVkCBUACWSAWe6IyciO2VrfS3gojtfgTMHYlpPVaNShkxVRS8bLOZcKgJJKnWANJOIdgIxZB6-NQrS9brBR2Plg5Eh3vdHotVuanCI9As2J3mHeDgDU_enRetNopbBrZYbBwd-6EJZQxCOibf9CHbzdQKxkuoLvahLpqJypOGQVWACUkUNMHqDAqbLUK36rWIT5KeD9KCIzHG7-SvXNisfz6_-zV9zH79oBdo2z82pmm99p0bgyyPaiscc5ifW8yELHrijs3xK4rxNAVIe3V4QPdJ921Af0NaZkGgA</recordid><startdate>20151013</startdate><enddate>20151013</enddate><creator>Kumanomidou, Taichi</creator><creator>Nishio, Kazuya</creator><creator>Takagi, Kenji</creator><creator>Nakagawa, Tomomi</creator><creator>Suzuki, Atsuo</creator><creator>Yamane, Takashi</creator><creator>Tokunaga, Fuminori</creator><creator>Iwai, Kazuhiro</creator><creator>Murakami, Arisa</creator><creator>Yoshida, Yukiko</creator><creator>Tanaka, Keiji</creator><creator>Mizushima, Tsunehiro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151013</creationdate><title>The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3</title><author>Kumanomidou, Taichi ; Nishio, Kazuya ; Takagi, Kenji ; Nakagawa, Tomomi ; Suzuki, Atsuo ; Yamane, Takashi ; Tokunaga, Fuminori ; Iwai, Kazuhiro ; Murakami, Arisa ; Yoshida, Yukiko ; Tanaka, Keiji ; Mizushima, Tsunehiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c688t-ca542997f6bbe5fd1b517c961e5e8136ceaa51b9188490bea1c18a8a1ce5cc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Binding</topic><topic>Carbohydrates</topic><topic>Cascades (Fluid dynamics)</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Conservation</topic><topic>Conserved sequence</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>F-box protein</topic><topic>F-Box Proteins - chemistry</topic><topic>F-Box Proteins - genetics</topic><topic>Glycoproteins</topic><topic>Glycoproteins - metabolism</topic><topic>Helices</topic><topic>Homology</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation - genetics</topic><topic>N-glycans</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Next-generation sequencing</topic><topic>Polysaccharides</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Residues</topic><topic>Ribonucleases - metabolism</topic><topic>S-Phase Kinase-Associated Proteins - chemistry</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Ubiquitin</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumanomidou, Taichi</creatorcontrib><creatorcontrib>Nishio, Kazuya</creatorcontrib><creatorcontrib>Takagi, Kenji</creatorcontrib><creatorcontrib>Nakagawa, Tomomi</creatorcontrib><creatorcontrib>Suzuki, Atsuo</creatorcontrib><creatorcontrib>Yamane, Takashi</creatorcontrib><creatorcontrib>Tokunaga, Fuminori</creatorcontrib><creatorcontrib>Iwai, Kazuhiro</creatorcontrib><creatorcontrib>Murakami, Arisa</creatorcontrib><creatorcontrib>Yoshida, Yukiko</creatorcontrib><creatorcontrib>Tanaka, Keiji</creatorcontrib><creatorcontrib>Mizushima, Tsunehiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumanomidou, Taichi</au><au>Nishio, Kazuya</au><au>Takagi, Kenji</au><au>Nakagawa, Tomomi</au><au>Suzuki, Atsuo</au><au>Yamane, Takashi</au><au>Tokunaga, Fuminori</au><au>Iwai, Kazuhiro</au><au>Murakami, Arisa</au><au>Yoshida, Yukiko</au><au>Tanaka, Keiji</au><au>Mizushima, Tsunehiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-10-13</date><risdate>2015</risdate><volume>10</volume><issue>10</issue><spage>e0140366</spage><epage>e0140366</epage><pages>e0140366-e0140366</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Skp1-Cul1-F-box protein (SCF) complex catalyzes protein ubiquitination in diverse cellular processes and is one of the best-characterized ubiquitin ligases. F-box proteins determine the substrate specificities of SCF ubiquitin ligases. Among these, Fbs1/FBG1/FBXO2, Fbs2/FBG2/FBXO6, and Fbs3/FBG5/FBXO27 recognize the N-glycans of glycoproteins, whereas FBG3/FBXO44 has no sugar-binding activity, despite the high sequence homology and conservation of the residues necessary for oligosaccharide binding between Fbs1-3 and FBG3. Here we determined the crystal structure of the Skp1-FBG3 complex at a resolution of 2.6 Å. The substrate-binding domain of FBG3 is composed of a 10-stranded antiparallel β-sandwich with three helices. Although the overall structure of FBG3 is similar to that of Fbs1, the residues that form the Fbs1 carbohydrate-binding pocket failed to be superposed with the corresponding residues of FBG3. Structure-based mutational analysis shows that distinct hydrogen bond networks of four FBG3 loops, i.e., β2-β3, β5-β6, β7-β8, and β9-β10, prevent the formation of the carbohydrate-binding pocket shown in Fbs1.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26460611</pmid><doi>10.1371/journal.pone.0140366</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-10, Vol.10 (10), p.e0140366-e0140366 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1721911217 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Amino Acid Sequence Analysis Binding Carbohydrates Cascades (Fluid dynamics) Cell Cycle Proteins - chemistry Conservation Conserved sequence Crystal structure Crystallography, X-Ray F-box protein F-Box Proteins - chemistry F-Box Proteins - genetics Glycoproteins Glycoproteins - metabolism Helices Homology Humans Hydrogen Hydrogen bonds Models, Molecular Molecular Sequence Data Mutant Proteins - metabolism Mutation - genetics N-glycans Nerve Tissue Proteins - chemistry Next-generation sequencing Polysaccharides Protein Binding Protein Structure, Tertiary Proteins Residues Ribonucleases - metabolism S-Phase Kinase-Associated Proteins - chemistry Sequence Homology, Amino Acid Substrate Specificity Substrates Sugar Ubiquitin Ubiquitin-proteasome system Ubiquitination |
title | The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structural%20Differences%20between%20a%20Glycoprotein%20Specific%20F-Box%20Protein%20Fbs1%20and%20Its%20Homologous%20Protein%20FBG3&rft.jtitle=PloS%20one&rft.au=Kumanomidou,%20Taichi&rft.date=2015-10-13&rft.volume=10&rft.issue=10&rft.spage=e0140366&rft.epage=e0140366&rft.pages=e0140366-e0140366&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0140366&rft_dat=%3Cgale_plos_%3EA431491300%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c688t-ca542997f6bbe5fd1b517c961e5e8136ceaa51b9188490bea1c18a8a1ce5cc5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1721911217&rft_id=info:pmid/26460611&rft_galeid=A431491300&rfr_iscdi=true |