Loading…
Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets
Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess sev...
Saved in:
Published in: | PloS one 2015-11, Vol.10 (11), p.e0141869-e0141869 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63 |
container_end_page | e0141869 |
container_issue | 11 |
container_start_page | e0141869 |
container_title | PloS one |
container_volume | 10 |
creator | Park, Heewon Imoto, Seiya Miyano, Satoru |
description | Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection. |
doi_str_mv | 10.1371/journal.pone.0141869 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1731533173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A433838902</galeid><doaj_id>oai_doaj_org_article_56bab641c5454d55b1df933401a0c876</doaj_id><sourcerecordid>A433838902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YWLtu_2BshsFoL5JJ1oflm0HIvgKBQtbtVsjSsaPgWKlkl_XfT0ncEo9eDF3ocPSc90hHb5K8xWiKSY4_bVzvW9VMd66FKcIUC148S85xQbIJzxB5fhKfJa9C2CDEiOD8ZXKWcUYpL_B5sliB7n2wd5CuVGvcNl2qEFx6uVodgqu0cj5dGGg7W93btk5nMZrMVavBp198X6c3ytfQhdfJi0o1Ad4M-0Xy69vXm_mPyfL6-2I-W050zkQ3EUSXkFdVCRUzplCi1BxBYQoMiBqtWVFShkxlmFGFokhTyHKuIReZUMxwcpG8P-ruGhfkMIUgcU4wIyRukVgcCePURu683Sp_L52y8pBwvpbKd1Y3IBkvVckp1owyahgrsakKQijCCmmR77t9Hrr15RaMjnPwqhmJjk9au5a1u5OUE44ZjgKXg4B3tz2ETm5t0NA0qgXXH-6dEYwyse_14R_06dcNVK3iA2xbudhX70XljBIiiChQFqnpE1RcBrZWR8tUNuZHBVejgsh08KerVR-CXPxc_T97_XvMfjxh16Cabh1c03fWtWEM0iOovQvBQ_U4ZIzk3vEP05B7x8vB8bHs3ekHPRY9WJz8BTRJ-lA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731533173</pqid></control><display><type>article</type><title>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Park, Heewon ; Imoto, Seiya ; Miyano, Satoru</creator><contributor>Cai, Xiaodong</contributor><creatorcontrib>Park, Heewon ; Imoto, Seiya ; Miyano, Satoru ; Cai, Xiaodong</creatorcontrib><description>Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0141869</identifier><identifier>PMID: 26544691</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Bioinformatics ; Biological effects ; Biomarkers ; Breast cancer ; Cancer ; Cancer genetics ; Colorectal cancer ; Computational Biology - methods ; Computer simulation ; Data analysis ; Data processing ; Datasets ; Dimensional analysis ; Drug therapy ; Epigenetics ; Gene expression ; Genes ; Genomes ; Genomics ; Information management ; Medical research ; Molecular Targeted Therapy ; Monte Carlo Method ; Monte Carlo methods ; Neoplasms - drug therapy ; Neoplasms - genetics ; Ovarian cancer ; Parameter estimation ; Regression analysis ; Regularization ; Regularization methods ; Science ; Sensitivity analysis ; Statistical analysis ; Statistics ; Variables</subject><ispartof>PloS one, 2015-11, Vol.10 (11), p.e0141869-e0141869</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Park et al 2015 Park et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</citedby><cites>FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1731533173/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1731533173?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26544691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Xiaodong</contributor><creatorcontrib>Park, Heewon</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><title>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.</description><subject>Analysis</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Colorectal cancer</subject><subject>Computational Biology - methods</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Dimensional analysis</subject><subject>Drug therapy</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Information management</subject><subject>Medical research</subject><subject>Molecular Targeted Therapy</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Ovarian cancer</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Science</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YWLtu_2BshsFoL5JJ1oflm0HIvgKBQtbtVsjSsaPgWKlkl_XfT0ncEo9eDF3ocPSc90hHb5K8xWiKSY4_bVzvW9VMd66FKcIUC148S85xQbIJzxB5fhKfJa9C2CDEiOD8ZXKWcUYpL_B5sliB7n2wd5CuVGvcNl2qEFx6uVodgqu0cj5dGGg7W93btk5nMZrMVavBp198X6c3ytfQhdfJi0o1Ad4M-0Xy69vXm_mPyfL6-2I-W050zkQ3EUSXkFdVCRUzplCi1BxBYQoMiBqtWVFShkxlmFGFokhTyHKuIReZUMxwcpG8P-ruGhfkMIUgcU4wIyRukVgcCePURu683Sp_L52y8pBwvpbKd1Y3IBkvVckp1owyahgrsakKQijCCmmR77t9Hrr15RaMjnPwqhmJjk9au5a1u5OUE44ZjgKXg4B3tz2ETm5t0NA0qgXXH-6dEYwyse_14R_06dcNVK3iA2xbudhX70XljBIiiChQFqnpE1RcBrZWR8tUNuZHBVejgsh08KerVR-CXPxc_T97_XvMfjxh16Cabh1c03fWtWEM0iOovQvBQ_U4ZIzk3vEP05B7x8vB8bHs3ekHPRY9WJz8BTRJ-lA</recordid><startdate>20151106</startdate><enddate>20151106</enddate><creator>Park, Heewon</creator><creator>Imoto, Seiya</creator><creator>Miyano, Satoru</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151106</creationdate><title>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</title><author>Park, Heewon ; Imoto, Seiya ; Miyano, Satoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Colorectal cancer</topic><topic>Computational Biology - methods</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Dimensional analysis</topic><topic>Drug therapy</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Information management</topic><topic>Medical research</topic><topic>Molecular Targeted Therapy</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Ovarian cancer</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Science</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Heewon</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Heewon</au><au>Imoto, Seiya</au><au>Miyano, Satoru</au><au>Cai, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-11-06</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>e0141869</spage><epage>e0141869</epage><pages>e0141869-e0141869</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26544691</pmid><doi>10.1371/journal.pone.0141869</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-11, Vol.10 (11), p.e0141869-e0141869 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1731533173 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Analysis Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Bioinformatics Biological effects Biomarkers Breast cancer Cancer Cancer genetics Colorectal cancer Computational Biology - methods Computer simulation Data analysis Data processing Datasets Dimensional analysis Drug therapy Epigenetics Gene expression Genes Genomes Genomics Information management Medical research Molecular Targeted Therapy Monte Carlo Method Monte Carlo methods Neoplasms - drug therapy Neoplasms - genetics Ovarian cancer Parameter estimation Regression analysis Regularization Regularization methods Science Sensitivity analysis Statistical analysis Statistics Variables |
title | Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20Random%20Lasso%20(RRLasso)%20for%20Identifying%20Anti-Cancer%20Drug%20Targets&rft.jtitle=PloS%20one&rft.au=Park,%20Heewon&rft.date=2015-11-06&rft.volume=10&rft.issue=11&rft.spage=e0141869&rft.epage=e0141869&rft.pages=e0141869-e0141869&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0141869&rft_dat=%3Cgale_plos_%3EA433838902%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731533173&rft_id=info:pmid/26544691&rft_galeid=A433838902&rfr_iscdi=true |