Loading…

Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets

Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess sev...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-11, Vol.10 (11), p.e0141869-e0141869
Main Authors: Park, Heewon, Imoto, Seiya, Miyano, Satoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63
cites cdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63
container_end_page e0141869
container_issue 11
container_start_page e0141869
container_title PloS one
container_volume 10
creator Park, Heewon
Imoto, Seiya
Miyano, Satoru
description Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.
doi_str_mv 10.1371/journal.pone.0141869
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1731533173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A433838902</galeid><doaj_id>oai_doaj_org_article_56bab641c5454d55b1df933401a0c876</doaj_id><sourcerecordid>A433838902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YWLtu_2BshsFoL5JJ1oflm0HIvgKBQtbtVsjSsaPgWKlkl_XfT0ncEo9eDF3ocPSc90hHb5K8xWiKSY4_bVzvW9VMd66FKcIUC148S85xQbIJzxB5fhKfJa9C2CDEiOD8ZXKWcUYpL_B5sliB7n2wd5CuVGvcNl2qEFx6uVodgqu0cj5dGGg7W93btk5nMZrMVavBp198X6c3ytfQhdfJi0o1Ad4M-0Xy69vXm_mPyfL6-2I-W050zkQ3EUSXkFdVCRUzplCi1BxBYQoMiBqtWVFShkxlmFGFokhTyHKuIReZUMxwcpG8P-ruGhfkMIUgcU4wIyRukVgcCePURu683Sp_L52y8pBwvpbKd1Y3IBkvVckp1owyahgrsakKQijCCmmR77t9Hrr15RaMjnPwqhmJjk9au5a1u5OUE44ZjgKXg4B3tz2ETm5t0NA0qgXXH-6dEYwyse_14R_06dcNVK3iA2xbudhX70XljBIiiChQFqnpE1RcBrZWR8tUNuZHBVejgsh08KerVR-CXPxc_T97_XvMfjxh16Cabh1c03fWtWEM0iOovQvBQ_U4ZIzk3vEP05B7x8vB8bHs3ekHPRY9WJz8BTRJ-lA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731533173</pqid></control><display><type>article</type><title>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Park, Heewon ; Imoto, Seiya ; Miyano, Satoru</creator><contributor>Cai, Xiaodong</contributor><creatorcontrib>Park, Heewon ; Imoto, Seiya ; Miyano, Satoru ; Cai, Xiaodong</creatorcontrib><description>Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0141869</identifier><identifier>PMID: 26544691</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Bioinformatics ; Biological effects ; Biomarkers ; Breast cancer ; Cancer ; Cancer genetics ; Colorectal cancer ; Computational Biology - methods ; Computer simulation ; Data analysis ; Data processing ; Datasets ; Dimensional analysis ; Drug therapy ; Epigenetics ; Gene expression ; Genes ; Genomes ; Genomics ; Information management ; Medical research ; Molecular Targeted Therapy ; Monte Carlo Method ; Monte Carlo methods ; Neoplasms - drug therapy ; Neoplasms - genetics ; Ovarian cancer ; Parameter estimation ; Regression analysis ; Regularization ; Regularization methods ; Science ; Sensitivity analysis ; Statistical analysis ; Statistics ; Variables</subject><ispartof>PloS one, 2015-11, Vol.10 (11), p.e0141869-e0141869</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Park et al 2015 Park et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</citedby><cites>FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1731533173/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1731533173?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26544691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Xiaodong</contributor><creatorcontrib>Park, Heewon</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><title>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.</description><subject>Analysis</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Colorectal cancer</subject><subject>Computational Biology - methods</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Dimensional analysis</subject><subject>Drug therapy</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Information management</subject><subject>Medical research</subject><subject>Molecular Targeted Therapy</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Ovarian cancer</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Science</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YWLtu_2BshsFoL5JJ1oflm0HIvgKBQtbtVsjSsaPgWKlkl_XfT0ncEo9eDF3ocPSc90hHb5K8xWiKSY4_bVzvW9VMd66FKcIUC148S85xQbIJzxB5fhKfJa9C2CDEiOD8ZXKWcUYpL_B5sliB7n2wd5CuVGvcNl2qEFx6uVodgqu0cj5dGGg7W93btk5nMZrMVavBp198X6c3ytfQhdfJi0o1Ad4M-0Xy69vXm_mPyfL6-2I-W050zkQ3EUSXkFdVCRUzplCi1BxBYQoMiBqtWVFShkxlmFGFokhTyHKuIReZUMxwcpG8P-ruGhfkMIUgcU4wIyRukVgcCePURu683Sp_L52y8pBwvpbKd1Y3IBkvVckp1owyahgrsakKQijCCmmR77t9Hrr15RaMjnPwqhmJjk9au5a1u5OUE44ZjgKXg4B3tz2ETm5t0NA0qgXXH-6dEYwyse_14R_06dcNVK3iA2xbudhX70XljBIiiChQFqnpE1RcBrZWR8tUNuZHBVejgsh08KerVR-CXPxc_T97_XvMfjxh16Cabh1c03fWtWEM0iOovQvBQ_U4ZIzk3vEP05B7x8vB8bHs3ekHPRY9WJz8BTRJ-lA</recordid><startdate>20151106</startdate><enddate>20151106</enddate><creator>Park, Heewon</creator><creator>Imoto, Seiya</creator><creator>Miyano, Satoru</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151106</creationdate><title>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</title><author>Park, Heewon ; Imoto, Seiya ; Miyano, Satoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Colorectal cancer</topic><topic>Computational Biology - methods</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Dimensional analysis</topic><topic>Drug therapy</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Information management</topic><topic>Medical research</topic><topic>Molecular Targeted Therapy</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Ovarian cancer</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Science</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Heewon</creatorcontrib><creatorcontrib>Imoto, Seiya</creatorcontrib><creatorcontrib>Miyano, Satoru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Heewon</au><au>Imoto, Seiya</au><au>Miyano, Satoru</au><au>Cai, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-11-06</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>e0141869</spage><epage>e0141869</epage><pages>e0141869-e0141869</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26544691</pmid><doi>10.1371/journal.pone.0141869</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-11, Vol.10 (11), p.e0141869-e0141869
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1731533173
source Publicly Available Content (ProQuest); PubMed Central
subjects Analysis
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Bioinformatics
Biological effects
Biomarkers
Breast cancer
Cancer
Cancer genetics
Colorectal cancer
Computational Biology - methods
Computer simulation
Data analysis
Data processing
Datasets
Dimensional analysis
Drug therapy
Epigenetics
Gene expression
Genes
Genomes
Genomics
Information management
Medical research
Molecular Targeted Therapy
Monte Carlo Method
Monte Carlo methods
Neoplasms - drug therapy
Neoplasms - genetics
Ovarian cancer
Parameter estimation
Regression analysis
Regularization
Regularization methods
Science
Sensitivity analysis
Statistical analysis
Statistics
Variables
title Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20Random%20Lasso%20(RRLasso)%20for%20Identifying%20Anti-Cancer%20Drug%20Targets&rft.jtitle=PloS%20one&rft.au=Park,%20Heewon&rft.date=2015-11-06&rft.volume=10&rft.issue=11&rft.spage=e0141869&rft.epage=e0141869&rft.pages=e0141869-e0141869&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0141869&rft_dat=%3Cgale_plos_%3EA433838902%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-83cbe7ffbef5dd9a8bc60e9d91e04dcc59b450dfd5da9a40c4e276ce7828a5d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731533173&rft_id=info:pmid/26544691&rft_galeid=A433838902&rfr_iscdi=true