Loading…

An Epidemiological Model of the Effects of Insecticide-Treated Bed Nets on Malaria Transmission

Insecticide-treated bed nets (ITNs) have become a central tool for malaria control because they provide personal and community-wide protection through their repellent and insecticidal properties. Here we propose a model that allows to assess the relative importance of those two effects in different...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-12, Vol.10 (12), p.e0144173-e0144173
Main Authors: Birget, Philip L G, Koella, Jacob C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Insecticide-treated bed nets (ITNs) have become a central tool for malaria control because they provide personal and community-wide protection through their repellent and insecticidal properties. Here we propose a model that allows to assess the relative importance of those two effects in different epidemiological contexts and we show that these two levels of protection may oppose each other. On the one hand, repellency offers personal protection to the users of ITNs. The repellent action, however, is a two-edged sword, for it diverts infectious mosquitoes to non-users, thereby increasing their risk. Furthermore, with increasing ITN coverage, the personal protection effect of repellency decreases as mosquitoes are forced to perform multiple feeding attempts even on ITN users. On the other hand, the insecticidal property, which offers community-wide protection by killing mosquitoes, requires that mosquitoes contact the insecticide on the ITN and is thus counteracted by the repellency. Our model confirms that ITNs are an effective intervention method by reducing total malaria prevalence in the population, but that there is a conflict between personal protection, offered by repellency, and community-wide protection, which relies on the ITN's insecticidal properties. Crucially, the model suggests that weak repellency allows disease elimination at lower ITN coverage levels.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0144173