Loading…
Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons
Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accum...
Saved in:
Published in: | PloS one 2015-12, Vol.10 (12), p.e0144848-e0144848 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6078-ca2cdc383bb567f9ced481887f4c62b17da63d6a7d8396f284caacd4da4d6a7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6078-ca2cdc383bb567f9ced481887f4c62b17da63d6a7d8396f284caacd4da4d6a7b3 |
container_end_page | e0144848 |
container_issue | 12 |
container_start_page | e0144848 |
container_title | PloS one |
container_volume | 10 |
creator | Aguirre, Pabla Mena, Natalia P Carrasco, Carlos M Muñoz, Yorka Pérez-Henríquez, Patricio Morales, Rodrigo A Cassels, Bruce K Méndez-Gálvez, Carolina García-Beltrán, Olimpo González-Billault, Christian Núñez, Marco T |
description | Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death. |
doi_str_mv | 10.1371/journal.pone.0144848 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1748858453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437466009</galeid><doaj_id>oai_doaj_org_article_07e3dcd9b356406682ba92db1457d413</doaj_id><sourcerecordid>A437466009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6078-ca2cdc383bb567f9ced481887f4c62b17da63d6a7d8396f284caacd4da4d6a7b3</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQgCMEYmPwDxBEQkIg1M6JHcd5QaoKg0rdVo3Cq3WxndRTahc7QUPix-Os2dSgPaA8JLp899l39kXRywRNE5wnp9e2cwaa6c4aNUUJIYywR9FxUuB0QlOEHx98H0XPvL9GKMOM0qfRUUppxgpSHEd_Fs6aeL5RDbTW-RiMjGem1fZGSzCtj69UrYxy0Kr4QnVOt1rEa6fULXmha2d96zS00MRnulRBYav4fLX6cHq-Wq8mS-V12KCMP9kdbHUw1UHQm6zxz6MnFTRevRjeJ9H3s8_r-dfJ8vLLYj5bTgRFOZsISIUUmOGyzGheFUJJwhLG8ooImpZJLoFiSSGXDBe0ShkRAEISCaSPlvgker337hrr-dA4z5OcMJYxkuFALPaEtHDNd05vwf3mFjS_DVhXc3Ch9EZxlCsshSxKnFGCKGVpCUUqy4RkuSRJ7_o4rNaVWyWFMq2DZiQd_zF6w2v7ixPKSKgyCN4NAmd_dsq3fKu9UE0DRtmu33eGEEoyRAL65h_04eoGqoZQgDaVDeuKXspnBOeEUoSKQE0foMIj1VaLcIiVDvFRwvtRQmBaddPW0HnPF9-u_p-9_DFm3x6wGwVNu_G26cKtNH4Mkj0owi30TlX3TU4Q74fkrhu8HxI-DElIe3V4QPdJd1OB_wJ8vw0n</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748858453</pqid></control><display><type>article</type><title>Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Aguirre, Pabla ; Mena, Natalia P ; Carrasco, Carlos M ; Muñoz, Yorka ; Pérez-Henríquez, Patricio ; Morales, Rodrigo A ; Cassels, Bruce K ; Méndez-Gálvez, Carolina ; García-Beltrán, Olimpo ; González-Billault, Christian ; Núñez, Marco T</creator><contributor>Finkelstein, David I</contributor><creatorcontrib>Aguirre, Pabla ; Mena, Natalia P ; Carrasco, Carlos M ; Muñoz, Yorka ; Pérez-Henríquez, Patricio ; Morales, Rodrigo A ; Cassels, Bruce K ; Méndez-Gálvez, Carolina ; García-Beltrán, Olimpo ; González-Billault, Christian ; Núñez, Marco T ; Finkelstein, David I</creatorcontrib><description>Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0144848</identifier><identifier>PMID: 26658949</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - antagonists & inhibitors ; 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology ; 2,2'-Dipyridyl - pharmacology ; 8-Hydroxyquinoline ; Acetylcysteine ; Aging ; Animals ; Antioxidants ; Antioxidants (Nutrients) ; Antioxidants - pharmacology ; Apoptosis ; Axonogenesis ; Basal ganglia ; Biology ; Brain research ; Care and treatment ; Cell culture ; Central nervous system diseases ; Chelating agents ; Damage accumulation ; Deferoxamine - pharmacology ; Dopamine ; Dopamine receptors ; Dopaminergic mechanisms ; Dopaminergic Neurons - drug effects ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Female ; Fibers ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - agonists ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - biosynthesis ; Health aspects ; Homeostasis ; Hydroxylase ; Hydroxyquinoline ; Hydroxyquinolines - pharmacology ; Hypotheses ; Hypoxia ; Iron ; Iron Chelating Agents - pharmacology ; Laboratories ; Life assessment ; Lipid Peroxidation - drug effects ; Male ; Medical treatment ; Mesencephalon - drug effects ; Mesencephalon - metabolism ; Mesencephalon - pathology ; Mice ; Mice, Inbred C57BL ; Model testing ; Movement disorders ; MPP ; MPTP ; MPTP Poisoning - drug therapy ; MPTP Poisoning - metabolism ; MPTP Poisoning - pathology ; Nerve Fibers - drug effects ; Nerve Fibers - metabolism ; Nerve Fibers - pathology ; Nervous system ; Neurites - drug effects ; Neurites - metabolism ; Neurites - pathology ; Neurodegeneration ; Neurodegenerative diseases ; Neurons ; Neuroprotective Agents - pharmacology ; Oral administration ; Oxidative stress ; Parkinson disease ; Parkinson's disease ; Parkinsons disease ; Potassium channels (inwardly-rectifying) ; Primary Cell Culture ; Pyridones - pharmacology ; Rats ; Rats, Sprague-Dawley ; Rodents ; Synaptophysin ; Synaptophysin - agonists ; Synaptophysin - biosynthesis ; Trees ; Tyrosine ; Tyrosine 3-monooxygenase ; Tyrosine 3-Monooxygenase - biosynthesis</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0144848-e0144848</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Aguirre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Aguirre et al 2015 Aguirre et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6078-ca2cdc383bb567f9ced481887f4c62b17da63d6a7d8396f284caacd4da4d6a7b3</citedby><cites>FETCH-LOGICAL-c6078-ca2cdc383bb567f9ced481887f4c62b17da63d6a7d8396f284caacd4da4d6a7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1748858453/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1748858453?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26658949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Finkelstein, David I</contributor><creatorcontrib>Aguirre, Pabla</creatorcontrib><creatorcontrib>Mena, Natalia P</creatorcontrib><creatorcontrib>Carrasco, Carlos M</creatorcontrib><creatorcontrib>Muñoz, Yorka</creatorcontrib><creatorcontrib>Pérez-Henríquez, Patricio</creatorcontrib><creatorcontrib>Morales, Rodrigo A</creatorcontrib><creatorcontrib>Cassels, Bruce K</creatorcontrib><creatorcontrib>Méndez-Gálvez, Carolina</creatorcontrib><creatorcontrib>García-Beltrán, Olimpo</creatorcontrib><creatorcontrib>González-Billault, Christian</creatorcontrib><creatorcontrib>Núñez, Marco T</creatorcontrib><title>Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.</description><subject>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - antagonists & inhibitors</subject><subject>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology</subject><subject>2,2'-Dipyridyl - pharmacology</subject><subject>8-Hydroxyquinoline</subject><subject>Acetylcysteine</subject><subject>Aging</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants (Nutrients)</subject><subject>Antioxidants - pharmacology</subject><subject>Apoptosis</subject><subject>Axonogenesis</subject><subject>Basal ganglia</subject><subject>Biology</subject><subject>Brain research</subject><subject>Care and treatment</subject><subject>Cell culture</subject><subject>Central nervous system diseases</subject><subject>Chelating agents</subject><subject>Damage accumulation</subject><subject>Deferoxamine - pharmacology</subject><subject>Dopamine</subject><subject>Dopamine receptors</subject><subject>Dopaminergic mechanisms</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Female</subject><subject>Fibers</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - agonists</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - biosynthesis</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Hydroxylase</subject><subject>Hydroxyquinoline</subject><subject>Hydroxyquinolines - pharmacology</subject><subject>Hypotheses</subject><subject>Hypoxia</subject><subject>Iron</subject><subject>Iron Chelating Agents - pharmacology</subject><subject>Laboratories</subject><subject>Life assessment</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Male</subject><subject>Medical treatment</subject><subject>Mesencephalon - drug effects</subject><subject>Mesencephalon - metabolism</subject><subject>Mesencephalon - pathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Model testing</subject><subject>Movement disorders</subject><subject>MPP</subject><subject>MPTP</subject><subject>MPTP Poisoning - drug therapy</subject><subject>MPTP Poisoning - metabolism</subject><subject>MPTP Poisoning - pathology</subject><subject>Nerve Fibers - drug effects</subject><subject>Nerve Fibers - metabolism</subject><subject>Nerve Fibers - pathology</subject><subject>Nervous system</subject><subject>Neurites - drug effects</subject><subject>Neurites - metabolism</subject><subject>Neurites - pathology</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Oral administration</subject><subject>Oxidative stress</subject><subject>Parkinson disease</subject><subject>Parkinson's disease</subject><subject>Parkinsons disease</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Primary Cell Culture</subject><subject>Pyridones - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Synaptophysin</subject><subject>Synaptophysin - agonists</subject><subject>Synaptophysin - biosynthesis</subject><subject>Trees</subject><subject>Tyrosine</subject><subject>Tyrosine 3-monooxygenase</subject><subject>Tyrosine 3-Monooxygenase - biosynthesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQgCMEYmPwDxBEQkIg1M6JHcd5QaoKg0rdVo3Cq3WxndRTahc7QUPix-Os2dSgPaA8JLp899l39kXRywRNE5wnp9e2cwaa6c4aNUUJIYywR9FxUuB0QlOEHx98H0XPvL9GKMOM0qfRUUppxgpSHEd_Fs6aeL5RDbTW-RiMjGem1fZGSzCtj69UrYxy0Kr4QnVOt1rEa6fULXmha2d96zS00MRnulRBYav4fLX6cHq-Wq8mS-V12KCMP9kdbHUw1UHQm6zxz6MnFTRevRjeJ9H3s8_r-dfJ8vLLYj5bTgRFOZsISIUUmOGyzGheFUJJwhLG8ooImpZJLoFiSSGXDBe0ShkRAEISCaSPlvgker337hrr-dA4z5OcMJYxkuFALPaEtHDNd05vwf3mFjS_DVhXc3Ch9EZxlCsshSxKnFGCKGVpCUUqy4RkuSRJ7_o4rNaVWyWFMq2DZiQd_zF6w2v7ixPKSKgyCN4NAmd_dsq3fKu9UE0DRtmu33eGEEoyRAL65h_04eoGqoZQgDaVDeuKXspnBOeEUoSKQE0foMIj1VaLcIiVDvFRwvtRQmBaddPW0HnPF9-u_p-9_DFm3x6wGwVNu_G26cKtNH4Mkj0owi30TlX3TU4Q74fkrhu8HxI-DElIe3V4QPdJd1OB_wJ8vw0n</recordid><startdate>20151214</startdate><enddate>20151214</enddate><creator>Aguirre, Pabla</creator><creator>Mena, Natalia P</creator><creator>Carrasco, Carlos M</creator><creator>Muñoz, Yorka</creator><creator>Pérez-Henríquez, Patricio</creator><creator>Morales, Rodrigo A</creator><creator>Cassels, Bruce K</creator><creator>Méndez-Gálvez, Carolina</creator><creator>García-Beltrán, Olimpo</creator><creator>González-Billault, Christian</creator><creator>Núñez, Marco T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151214</creationdate><title>Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons</title><author>Aguirre, Pabla ; Mena, Natalia P ; Carrasco, Carlos M ; Muñoz, Yorka ; Pérez-Henríquez, Patricio ; Morales, Rodrigo A ; Cassels, Bruce K ; Méndez-Gálvez, Carolina ; García-Beltrán, Olimpo ; González-Billault, Christian ; Núñez, Marco T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6078-ca2cdc383bb567f9ced481887f4c62b17da63d6a7d8396f284caacd4da4d6a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - antagonists & inhibitors</topic><topic>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology</topic><topic>2,2'-Dipyridyl - pharmacology</topic><topic>8-Hydroxyquinoline</topic><topic>Acetylcysteine</topic><topic>Aging</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants (Nutrients)</topic><topic>Antioxidants - pharmacology</topic><topic>Apoptosis</topic><topic>Axonogenesis</topic><topic>Basal ganglia</topic><topic>Biology</topic><topic>Brain research</topic><topic>Care and treatment</topic><topic>Cell culture</topic><topic>Central nervous system diseases</topic><topic>Chelating agents</topic><topic>Damage accumulation</topic><topic>Deferoxamine - pharmacology</topic><topic>Dopamine</topic><topic>Dopamine receptors</topic><topic>Dopaminergic mechanisms</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Female</topic><topic>Fibers</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - agonists</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - biosynthesis</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Hydroxylase</topic><topic>Hydroxyquinoline</topic><topic>Hydroxyquinolines - pharmacology</topic><topic>Hypotheses</topic><topic>Hypoxia</topic><topic>Iron</topic><topic>Iron Chelating Agents - pharmacology</topic><topic>Laboratories</topic><topic>Life assessment</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Male</topic><topic>Medical treatment</topic><topic>Mesencephalon - drug effects</topic><topic>Mesencephalon - metabolism</topic><topic>Mesencephalon - pathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Model testing</topic><topic>Movement disorders</topic><topic>MPP</topic><topic>MPTP</topic><topic>MPTP Poisoning - drug therapy</topic><topic>MPTP Poisoning - metabolism</topic><topic>MPTP Poisoning - pathology</topic><topic>Nerve Fibers - drug effects</topic><topic>Nerve Fibers - metabolism</topic><topic>Nerve Fibers - pathology</topic><topic>Nervous system</topic><topic>Neurites - drug effects</topic><topic>Neurites - metabolism</topic><topic>Neurites - pathology</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Oral administration</topic><topic>Oxidative stress</topic><topic>Parkinson disease</topic><topic>Parkinson's disease</topic><topic>Parkinsons disease</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Primary Cell Culture</topic><topic>Pyridones - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Synaptophysin</topic><topic>Synaptophysin - agonists</topic><topic>Synaptophysin - biosynthesis</topic><topic>Trees</topic><topic>Tyrosine</topic><topic>Tyrosine 3-monooxygenase</topic><topic>Tyrosine 3-Monooxygenase - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguirre, Pabla</creatorcontrib><creatorcontrib>Mena, Natalia P</creatorcontrib><creatorcontrib>Carrasco, Carlos M</creatorcontrib><creatorcontrib>Muñoz, Yorka</creatorcontrib><creatorcontrib>Pérez-Henríquez, Patricio</creatorcontrib><creatorcontrib>Morales, Rodrigo A</creatorcontrib><creatorcontrib>Cassels, Bruce K</creatorcontrib><creatorcontrib>Méndez-Gálvez, Carolina</creatorcontrib><creatorcontrib>García-Beltrán, Olimpo</creatorcontrib><creatorcontrib>González-Billault, Christian</creatorcontrib><creatorcontrib>Núñez, Marco T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguirre, Pabla</au><au>Mena, Natalia P</au><au>Carrasco, Carlos M</au><au>Muñoz, Yorka</au><au>Pérez-Henríquez, Patricio</au><au>Morales, Rodrigo A</au><au>Cassels, Bruce K</au><au>Méndez-Gálvez, Carolina</au><au>García-Beltrán, Olimpo</au><au>González-Billault, Christian</au><au>Núñez, Marco T</au><au>Finkelstein, David I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-14</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0144848</spage><epage>e0144848</epage><pages>e0144848-e0144848</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neuronal death in Parkinson's disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26658949</pmid><doi>10.1371/journal.pone.0144848</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-12, Vol.10 (12), p.e0144848-e0144848 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1748858453 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - antagonists & inhibitors 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology 2,2'-Dipyridyl - pharmacology 8-Hydroxyquinoline Acetylcysteine Aging Animals Antioxidants Antioxidants (Nutrients) Antioxidants - pharmacology Apoptosis Axonogenesis Basal ganglia Biology Brain research Care and treatment Cell culture Central nervous system diseases Chelating agents Damage accumulation Deferoxamine - pharmacology Dopamine Dopamine receptors Dopaminergic mechanisms Dopaminergic Neurons - drug effects Dopaminergic Neurons - metabolism Dopaminergic Neurons - pathology Female Fibers G Protein-Coupled Inwardly-Rectifying Potassium Channels - agonists G Protein-Coupled Inwardly-Rectifying Potassium Channels - biosynthesis Health aspects Homeostasis Hydroxylase Hydroxyquinoline Hydroxyquinolines - pharmacology Hypotheses Hypoxia Iron Iron Chelating Agents - pharmacology Laboratories Life assessment Lipid Peroxidation - drug effects Male Medical treatment Mesencephalon - drug effects Mesencephalon - metabolism Mesencephalon - pathology Mice Mice, Inbred C57BL Model testing Movement disorders MPP MPTP MPTP Poisoning - drug therapy MPTP Poisoning - metabolism MPTP Poisoning - pathology Nerve Fibers - drug effects Nerve Fibers - metabolism Nerve Fibers - pathology Nervous system Neurites - drug effects Neurites - metabolism Neurites - pathology Neurodegeneration Neurodegenerative diseases Neurons Neuroprotective Agents - pharmacology Oral administration Oxidative stress Parkinson disease Parkinson's disease Parkinsons disease Potassium channels (inwardly-rectifying) Primary Cell Culture Pyridones - pharmacology Rats Rats, Sprague-Dawley Rodents Synaptophysin Synaptophysin - agonists Synaptophysin - biosynthesis Trees Tyrosine Tyrosine 3-monooxygenase Tyrosine 3-Monooxygenase - biosynthesis |
title | Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20Chelators%20and%20Antioxidants%20Regenerate%20Neuritic%20Tree%20and%20Nigrostriatal%20Fibers%20of%20MPP+/MPTP-Lesioned%20Dopaminergic%20Neurons&rft.jtitle=PloS%20one&rft.au=Aguirre,%20Pabla&rft.date=2015-12-14&rft.volume=10&rft.issue=12&rft.spage=e0144848&rft.epage=e0144848&rft.pages=e0144848-e0144848&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0144848&rft_dat=%3Cgale_plos_%3EA437466009%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6078-ca2cdc383bb567f9ced481887f4c62b17da63d6a7d8396f284caacd4da4d6a7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1748858453&rft_id=info:pmid/26658949&rft_galeid=A437466009&rfr_iscdi=true |