Loading…

Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome

Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-12, Vol.10 (12), p.e0144596
Main Authors: Draberova, Lubica, Paulenda, Tomas, Halova, Ivana, Potuckova, Lucie, Bugajev, Viktor, Bambouskova, Monika, Tumova, Magda, Draber, Petr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-f280fce4b7af88cdea4a45bdf6b73cff761388ff4277d49b1d4d0fedd577bce33
cites cdi_FETCH-LOGICAL-c526t-f280fce4b7af88cdea4a45bdf6b73cff761388ff4277d49b1d4d0fedd577bce33
container_end_page
container_issue 12
container_start_page e0144596
container_title PloS one
container_volume 10
creator Draberova, Lubica
Paulenda, Tomas
Halova, Ivana
Potuckova, Lucie
Bugajev, Viktor
Bambouskova, Monika
Tumova, Magda
Draber, Petr
description Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane.
doi_str_mv 10.1371/journal.pone.0144596
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1748864576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b80b828ae57f47ab897b2cee161bd25f</doaj_id><sourcerecordid>3895000571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-f280fce4b7af88cdea4a45bdf6b73cff761388ff4277d49b1d4d0fedd577bce33</originalsourceid><addsrcrecordid>eNp1Uk1u1DAUjhCIlsINEFhiA4sMduLYzgapGs3QkYqQWlhbtmMnHiV2sB2kOQkn4RqciQyTVu2ClZ_8vj89fVn2GsEVKin6uPdTcKJfjd7pFUQYVzV5kp2juixyUsDy6YP5LHsR4x7CqmSEPM_OCkIqVtTwPPu1SZ1wvgc711lpUwRXtu3yS2Oss-kAdsMwOd_2Xk69dWADbrTSY_IBvN-qP79vdh_ArW3nHNa1YAZ8ETGBte77COQB3E7jGHSMx2XqNNhOTiXrHfAGnOj5uvO9jkmHOcNJyUc_6JfZMyP6qF8t70X2fbv5tr7Kr79-3q0vr3NVFSTlpmDQKI0lFYYx1WiBBa5kY4ikpTKGElQyZgwuKG1wLVGDG2h001SUSqXL8iJ7e9IdZ1--3DRyRDFjBFeUzIjdCdF4sedjsIMIB-6F5f8-fGi5CMmqXnPJoGQFE7qiBlMhWU1lobRGBMmmqMys9Wlxm-SgG6VdCqJ_JPp442zHW_-TY8IIhHAWeLcIBP9jmu_2n8j4hFLBxxi0uXdAkB_Lc8fix_LwpTwz7c3DdPeku7aUfwGDeMhs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748864576</pqid></control><display><type>article</type><title>Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Draberova, Lubica ; Paulenda, Tomas ; Halova, Ivana ; Potuckova, Lucie ; Bugajev, Viktor ; Bambouskova, Monika ; Tumova, Magda ; Draber, Petr</creator><contributor>Holowka, David</contributor><creatorcontrib>Draberova, Lubica ; Paulenda, Tomas ; Halova, Ivana ; Potuckova, Lucie ; Bugajev, Viktor ; Bambouskova, Monika ; Tumova, Magda ; Draber, Petr ; Holowka, David</creatorcontrib><description>Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0144596</identifier><identifier>PMID: 26658290</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; AKT protein ; Alcohol ; Anaphylaxis ; Animals ; Antigens ; Binding sites ; Biocompatibility ; Bone marrow ; Calcium ; Calcium - metabolism ; Cholesterol ; Cholesterol - metabolism ; Cyclodextrin ; Cyclodextrins ; Cytokines ; Cytokines - genetics ; Cytokines - metabolism ; Degranulation ; Dose-Response Relationship, Drug ; Ethanol ; Ethanol - pharmacology ; Experiments ; Exposure ; Flow cytometry ; Gene expression ; Gene Expression - drug effects ; Immunoglobulin E ; Inflammation ; Inhibition ; Interleukin ; Interleukin 13 ; Interleukin 6 ; Internalization ; Kinases ; Laboratories ; Lipids ; Mast cells ; Mast Cells - drug effects ; Mast Cells - metabolism ; Methyl-β-Cyclodextrin ; Mice ; Oxygen ; Phase transitions ; Phospholipase ; Phospholipase C ; Phosphorylation ; Polyclonal antibodies ; Proteins ; Reactive oxygen species ; Receptors, IgE - metabolism ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; Signalosomes ; Stat5 protein ; Streptococcus infections ; Syk protein ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Tyrosine</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0144596</ispartof><rights>2015 Draberova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Draberova et al 2015 Draberova et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-f280fce4b7af88cdea4a45bdf6b73cff761388ff4277d49b1d4d0fedd577bce33</citedby><cites>FETCH-LOGICAL-c526t-f280fce4b7af88cdea4a45bdf6b73cff761388ff4277d49b1d4d0fedd577bce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1748864576/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1748864576?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26658290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Holowka, David</contributor><creatorcontrib>Draberova, Lubica</creatorcontrib><creatorcontrib>Paulenda, Tomas</creatorcontrib><creatorcontrib>Halova, Ivana</creatorcontrib><creatorcontrib>Potuckova, Lucie</creatorcontrib><creatorcontrib>Bugajev, Viktor</creatorcontrib><creatorcontrib>Bambouskova, Monika</creatorcontrib><creatorcontrib>Tumova, Magda</creatorcontrib><creatorcontrib>Draber, Petr</creatorcontrib><title>Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane.</description><subject>Affinity</subject><subject>AKT protein</subject><subject>Alcohol</subject><subject>Anaphylaxis</subject><subject>Animals</subject><subject>Antigens</subject><subject>Binding sites</subject><subject>Biocompatibility</subject><subject>Bone marrow</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cyclodextrin</subject><subject>Cyclodextrins</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Degranulation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ethanol</subject><subject>Ethanol - pharmacology</subject><subject>Experiments</subject><subject>Exposure</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Immunoglobulin E</subject><subject>Inflammation</subject><subject>Inhibition</subject><subject>Interleukin</subject><subject>Interleukin 13</subject><subject>Interleukin 6</subject><subject>Internalization</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lipids</subject><subject>Mast cells</subject><subject>Mast Cells - drug effects</subject><subject>Mast Cells - metabolism</subject><subject>Methyl-β-Cyclodextrin</subject><subject>Mice</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Phospholipase</subject><subject>Phospholipase C</subject><subject>Phosphorylation</subject><subject>Polyclonal antibodies</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Receptors, IgE - metabolism</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Signalosomes</subject><subject>Stat5 protein</subject><subject>Streptococcus infections</subject><subject>Syk protein</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Tyrosine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1u1DAUjhCIlsINEFhiA4sMduLYzgapGs3QkYqQWlhbtmMnHiV2sB2kOQkn4RqciQyTVu2ClZ_8vj89fVn2GsEVKin6uPdTcKJfjd7pFUQYVzV5kp2juixyUsDy6YP5LHsR4x7CqmSEPM_OCkIqVtTwPPu1SZ1wvgc711lpUwRXtu3yS2Oss-kAdsMwOd_2Xk69dWADbrTSY_IBvN-qP79vdh_ArW3nHNa1YAZ8ETGBte77COQB3E7jGHSMx2XqNNhOTiXrHfAGnOj5uvO9jkmHOcNJyUc_6JfZMyP6qF8t70X2fbv5tr7Kr79-3q0vr3NVFSTlpmDQKI0lFYYx1WiBBa5kY4ikpTKGElQyZgwuKG1wLVGDG2h001SUSqXL8iJ7e9IdZ1--3DRyRDFjBFeUzIjdCdF4sedjsIMIB-6F5f8-fGi5CMmqXnPJoGQFE7qiBlMhWU1lobRGBMmmqMys9Wlxm-SgG6VdCqJ_JPp442zHW_-TY8IIhHAWeLcIBP9jmu_2n8j4hFLBxxi0uXdAkB_Lc8fix_LwpTwz7c3DdPeku7aUfwGDeMhs</recordid><startdate>20151214</startdate><enddate>20151214</enddate><creator>Draberova, Lubica</creator><creator>Paulenda, Tomas</creator><creator>Halova, Ivana</creator><creator>Potuckova, Lucie</creator><creator>Bugajev, Viktor</creator><creator>Bambouskova, Monika</creator><creator>Tumova, Magda</creator><creator>Draber, Petr</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151214</creationdate><title>Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome</title><author>Draberova, Lubica ; Paulenda, Tomas ; Halova, Ivana ; Potuckova, Lucie ; Bugajev, Viktor ; Bambouskova, Monika ; Tumova, Magda ; Draber, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-f280fce4b7af88cdea4a45bdf6b73cff761388ff4277d49b1d4d0fedd577bce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Affinity</topic><topic>AKT protein</topic><topic>Alcohol</topic><topic>Anaphylaxis</topic><topic>Animals</topic><topic>Antigens</topic><topic>Binding sites</topic><topic>Biocompatibility</topic><topic>Bone marrow</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cyclodextrin</topic><topic>Cyclodextrins</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Degranulation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ethanol</topic><topic>Ethanol - pharmacology</topic><topic>Experiments</topic><topic>Exposure</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Immunoglobulin E</topic><topic>Inflammation</topic><topic>Inhibition</topic><topic>Interleukin</topic><topic>Interleukin 13</topic><topic>Interleukin 6</topic><topic>Internalization</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lipids</topic><topic>Mast cells</topic><topic>Mast Cells - drug effects</topic><topic>Mast Cells - metabolism</topic><topic>Methyl-β-Cyclodextrin</topic><topic>Mice</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Phospholipase</topic><topic>Phospholipase C</topic><topic>Phosphorylation</topic><topic>Polyclonal antibodies</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Receptors, IgE - metabolism</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Signalosomes</topic><topic>Stat5 protein</topic><topic>Streptococcus infections</topic><topic>Syk protein</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Draberova, Lubica</creatorcontrib><creatorcontrib>Paulenda, Tomas</creatorcontrib><creatorcontrib>Halova, Ivana</creatorcontrib><creatorcontrib>Potuckova, Lucie</creatorcontrib><creatorcontrib>Bugajev, Viktor</creatorcontrib><creatorcontrib>Bambouskova, Monika</creatorcontrib><creatorcontrib>Tumova, Magda</creatorcontrib><creatorcontrib>Draber, Petr</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Draberova, Lubica</au><au>Paulenda, Tomas</au><au>Halova, Ivana</au><au>Potuckova, Lucie</au><au>Bugajev, Viktor</au><au>Bambouskova, Monika</au><au>Tumova, Magda</au><au>Draber, Petr</au><au>Holowka, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-14</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0144596</spage><pages>e0144596-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26658290</pmid><doi>10.1371/journal.pone.0144596</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-12, Vol.10 (12), p.e0144596
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1748864576
source Open Access: PubMed Central; Publicly Available Content Database
subjects Affinity
AKT protein
Alcohol
Anaphylaxis
Animals
Antigens
Binding sites
Biocompatibility
Bone marrow
Calcium
Calcium - metabolism
Cholesterol
Cholesterol - metabolism
Cyclodextrin
Cyclodextrins
Cytokines
Cytokines - genetics
Cytokines - metabolism
Degranulation
Dose-Response Relationship, Drug
Ethanol
Ethanol - pharmacology
Experiments
Exposure
Flow cytometry
Gene expression
Gene Expression - drug effects
Immunoglobulin E
Inflammation
Inhibition
Interleukin
Interleukin 13
Interleukin 6
Internalization
Kinases
Laboratories
Lipids
Mast cells
Mast Cells - drug effects
Mast Cells - metabolism
Methyl-β-Cyclodextrin
Mice
Oxygen
Phase transitions
Phospholipase
Phospholipase C
Phosphorylation
Polyclonal antibodies
Proteins
Reactive oxygen species
Receptors, IgE - metabolism
Rodents
Signal transduction
Signal Transduction - drug effects
Signaling
Signalosomes
Stat5 protein
Streptococcus infections
Syk protein
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Tyrosine
title Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethanol%20Inhibits%20High-Affinity%20Immunoglobulin%20E%20Receptor%20(Fc%CE%B5RI)%20Signaling%20in%20Mast%20Cells%20by%20Suppressing%20the%20Function%20of%20Fc%CE%B5RI-Cholesterol%20Signalosome&rft.jtitle=PloS%20one&rft.au=Draberova,%20Lubica&rft.date=2015-12-14&rft.volume=10&rft.issue=12&rft.spage=e0144596&rft.pages=e0144596-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0144596&rft_dat=%3Cproquest_plos_%3E3895000571%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-f280fce4b7af88cdea4a45bdf6b73cff761388ff4277d49b1d4d0fedd577bce33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1748864576&rft_id=info:pmid/26658290&rfr_iscdi=true