Loading…

FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants

There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limi...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2015-11, Vol.11 (11), p.e1004556
Main Authors: Bednar, David, Beerens, Koen, Sebestova, Eva, Bendl, Jaroslav, Khare, Sagar, Chaloupkova, Radka, Prokop, Zbynek, Brezovsky, Jan, Baker, David, Damborsky, Jiri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c671t-19308c4446a15ad53444fb9d89d7c97626d0a9f5d6e9fa18ff37dd5d31a9085c3
cites cdi_FETCH-LOGICAL-c671t-19308c4446a15ad53444fb9d89d7c97626d0a9f5d6e9fa18ff37dd5d31a9085c3
container_end_page
container_issue 11
container_start_page e1004556
container_title PLoS computational biology
container_volume 11
creator Bednar, David
Beerens, Koen
Sebestova, Eva
Bendl, Jaroslav
Khare, Sagar
Chaloupkova, Radka
Prokop, Zbynek
Brezovsky, Jan
Baker, David
Damborsky, Jiri
description There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.
doi_str_mv 10.1371/journal.pcbi.1004556
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1749645326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437059218</galeid><doaj_id>oai_doaj_org_article_3d38101113604560ba9dd00952e39a1e</doaj_id><sourcerecordid>A437059218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-19308c4446a15ad53444fb9d89d7c97626d0a9f5d6e9fa18ff37dd5d31a9085c3</originalsourceid><addsrcrecordid>eNqVUtFuFCEUnRiNrdU_MDqvPswKw8AMPpjUdaubVG20PpM7A0zZsDABprF_L-tum-6j4YHL5Zxzw-EUxWuMFpi0-P3Gz8GBXUxDbxYYoYZS9qQ4xZSSqiW0e_qoPilexLhBKJecPS9OakZrznB9WsCFCeoq-PShXDkVxruqBCfL1a23czLeVZ8gKlku_XaaE-w6YMvPKprRlV6X1zcqbH1M0FtVfpttMpNV1ZU3LuVjApfiy-KZBhvVq8N-Vvy-WF0vv1aXP76sl-eX1cBanCrMCeqGpmkYYAqSklzqnsuOy3bgLauZRMA1lUxxDbjTmrRSUkkwcNTRgZwVb_e6k_VRHNyJArcNZw0lNcuI9R4hPWzEFMwWwp3wYMS_hg-jgJDMYJUgknQYYYwJy8Yy1AOXEiFOa0U4YJW1Ph6mzf1WyUG5FMAeiR7fOHMjRn8rGkZw_qossNgLjJDnGad9hg15SbU1g3dKm9w_b0iLKK9xlwnvjggZk9SfNMIco1j_-vkf2O_H2GaPHYKPMSj98AiMxC5p916KXdLEIWmZ9uaxAQ-k-2iRvzJ_0Fs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bednar, David ; Beerens, Koen ; Sebestova, Eva ; Bendl, Jaroslav ; Khare, Sagar ; Chaloupkova, Radka ; Prokop, Zbynek ; Brezovsky, Jan ; Baker, David ; Damborsky, Jiri</creator><contributor>Dokholyan, Nikolay V.</contributor><creatorcontrib>Bednar, David ; Beerens, Koen ; Sebestova, Eva ; Bendl, Jaroslav ; Khare, Sagar ; Chaloupkova, Radka ; Prokop, Zbynek ; Brezovsky, Jan ; Baker, David ; Damborsky, Jiri ; Dokholyan, Nikolay V.</creatorcontrib><description>There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004556</identifier><identifier>PMID: 26529612</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biocatalysts ; Computational Biology - methods ; Computer Simulation ; Databases, Genetic ; Enzyme Stability - genetics ; Enzymes ; Experiments ; Gene expression ; Gene mutations ; Lyases - chemistry ; Lyases - genetics ; Lyases - metabolism ; Models, Molecular ; Mutagenesis ; Mutation ; Nanomaterials ; Point Mutation - genetics ; Point Mutation - physiology ; Protein Engineering - methods ; Proteins ; State budgets ; Studies ; Temperature</subject><ispartof>PLoS computational biology, 2015-11, Vol.11 (11), p.e1004556</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Bednar et al 2015 Bednar et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bednar D, Beerens K, Sebestova E, Bendl J, Khare S, Chaloupkova R, et al. (2015) FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLoS Comput Biol 11(11): e1004556. doi:10.1371/journal.pcbi.1004556</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-19308c4446a15ad53444fb9d89d7c97626d0a9f5d6e9fa18ff37dd5d31a9085c3</citedby><cites>FETCH-LOGICAL-c671t-19308c4446a15ad53444fb9d89d7c97626d0a9f5d6e9fa18ff37dd5d31a9085c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631455/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631455/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27925,27926,53792,53794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26529612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dokholyan, Nikolay V.</contributor><creatorcontrib>Bednar, David</creatorcontrib><creatorcontrib>Beerens, Koen</creatorcontrib><creatorcontrib>Sebestova, Eva</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Khare, Sagar</creatorcontrib><creatorcontrib>Chaloupkova, Radka</creatorcontrib><creatorcontrib>Prokop, Zbynek</creatorcontrib><creatorcontrib>Brezovsky, Jan</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Damborsky, Jiri</creatorcontrib><title>FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.</description><subject>Analysis</subject><subject>Biocatalysts</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Enzyme Stability - genetics</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene mutations</subject><subject>Lyases - chemistry</subject><subject>Lyases - genetics</subject><subject>Lyases - metabolism</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nanomaterials</subject><subject>Point Mutation - genetics</subject><subject>Point Mutation - physiology</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>State budgets</subject><subject>Studies</subject><subject>Temperature</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVUtFuFCEUnRiNrdU_MDqvPswKw8AMPpjUdaubVG20PpM7A0zZsDABprF_L-tum-6j4YHL5Zxzw-EUxWuMFpi0-P3Gz8GBXUxDbxYYoYZS9qQ4xZSSqiW0e_qoPilexLhBKJecPS9OakZrznB9WsCFCeoq-PShXDkVxruqBCfL1a23czLeVZ8gKlku_XaaE-w6YMvPKprRlV6X1zcqbH1M0FtVfpttMpNV1ZU3LuVjApfiy-KZBhvVq8N-Vvy-WF0vv1aXP76sl-eX1cBanCrMCeqGpmkYYAqSklzqnsuOy3bgLauZRMA1lUxxDbjTmrRSUkkwcNTRgZwVb_e6k_VRHNyJArcNZw0lNcuI9R4hPWzEFMwWwp3wYMS_hg-jgJDMYJUgknQYYYwJy8Yy1AOXEiFOa0U4YJW1Ph6mzf1WyUG5FMAeiR7fOHMjRn8rGkZw_qossNgLjJDnGad9hg15SbU1g3dKm9w_b0iLKK9xlwnvjggZk9SfNMIco1j_-vkf2O_H2GaPHYKPMSj98AiMxC5p916KXdLEIWmZ9uaxAQ-k-2iRvzJ_0Fs</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Bednar, David</creator><creator>Beerens, Koen</creator><creator>Sebestova, Eva</creator><creator>Bendl, Jaroslav</creator><creator>Khare, Sagar</creator><creator>Chaloupkova, Radka</creator><creator>Prokop, Zbynek</creator><creator>Brezovsky, Jan</creator><creator>Baker, David</creator><creator>Damborsky, Jiri</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151101</creationdate><title>FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants</title><author>Bednar, David ; Beerens, Koen ; Sebestova, Eva ; Bendl, Jaroslav ; Khare, Sagar ; Chaloupkova, Radka ; Prokop, Zbynek ; Brezovsky, Jan ; Baker, David ; Damborsky, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-19308c4446a15ad53444fb9d89d7c97626d0a9f5d6e9fa18ff37dd5d31a9085c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Biocatalysts</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Enzyme Stability - genetics</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene mutations</topic><topic>Lyases - chemistry</topic><topic>Lyases - genetics</topic><topic>Lyases - metabolism</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nanomaterials</topic><topic>Point Mutation - genetics</topic><topic>Point Mutation - physiology</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>State budgets</topic><topic>Studies</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bednar, David</creatorcontrib><creatorcontrib>Beerens, Koen</creatorcontrib><creatorcontrib>Sebestova, Eva</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Khare, Sagar</creatorcontrib><creatorcontrib>Chaloupkova, Radka</creatorcontrib><creatorcontrib>Prokop, Zbynek</creatorcontrib><creatorcontrib>Brezovsky, Jan</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Damborsky, Jiri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale in Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bednar, David</au><au>Beerens, Koen</au><au>Sebestova, Eva</au><au>Bendl, Jaroslav</au><au>Khare, Sagar</au><au>Chaloupkova, Radka</au><au>Prokop, Zbynek</au><au>Brezovsky, Jan</au><au>Baker, David</au><au>Damborsky, Jiri</au><au>Dokholyan, Nikolay V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>11</volume><issue>11</issue><spage>e1004556</spage><pages>e1004556-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26529612</pmid><doi>10.1371/journal.pcbi.1004556</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-11, Vol.11 (11), p.e1004556
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1749645326
source Publicly Available Content Database; PubMed Central
subjects Analysis
Biocatalysts
Computational Biology - methods
Computer Simulation
Databases, Genetic
Enzyme Stability - genetics
Enzymes
Experiments
Gene expression
Gene mutations
Lyases - chemistry
Lyases - genetics
Lyases - metabolism
Models, Molecular
Mutagenesis
Mutation
Nanomaterials
Point Mutation - genetics
Point Mutation - physiology
Protein Engineering - methods
Proteins
State budgets
Studies
Temperature
title FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FireProt:%20Energy-%20and%20Evolution-Based%20Computational%20Design%20of%20Thermostable%20Multiple-Point%20Mutants&rft.jtitle=PLoS%20computational%20biology&rft.au=Bednar,%20David&rft.date=2015-11-01&rft.volume=11&rft.issue=11&rft.spage=e1004556&rft.pages=e1004556-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004556&rft_dat=%3Cgale_plos_%3EA437059218%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c671t-19308c4446a15ad53444fb9d89d7c97626d0a9f5d6e9fa18ff37dd5d31a9085c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26529612&rft_galeid=A437059218&rfr_iscdi=true