Loading…

TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells

Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-12, Vol.10 (12), p.e0145523-e0145523
Main Authors: Eiselein, Larissa, Nyunt, Tun, Lamé, Michael W, Ng, Kit F, Wilson, Dennis W, Rutledge, John C, Aung, Hnin H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3
cites cdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3
container_end_page e0145523
container_issue 12
container_start_page e0145523
container_title PloS one
container_volume 10
creator Eiselein, Larissa
Nyunt, Tun
Lamé, Michael W
Ng, Kit F
Wilson, Dennis W
Rutledge, John C
Aung, Hnin H
description Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.
doi_str_mv 10.1371/journal.pone.0145523
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1752179709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63a59ac8c91141d88a0e476f6cb88535</doaj_id><sourcerecordid>1752586750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</originalsourceid><addsrcrecordid>eNptks9uEzEQxlcIRP_AGyCwxKWXDfZ67V1fkKqoSSNFoirhbDne2caRs15sb1FeiwfhmXCabdUiTmPN_ObzzOjLsg8ETwityJetG3yn7KR3HUwwKRkr6KvslAha5LzA9PWz90l2FsIWY0Zrzt9mJwWvsGBYnGZxNb9doqXpnd0HE9CNd82gY0CLLkVA36OH8JCOYDp0uZpRdG8UihtAq_ks__Mb3YKGPjqPblTc_FJ7lLjrYacS7Xw0Gl11jUu8NcqiKVgb3mVvWmUDvB_jefZjdrWaXufLb_PF9HKZa1bwmBNeFnULfM3pGleYVqBF2Qqq2pZS0aYKKIpLTrgSqaBAa8oZ0ayCpi5ZS8-zT0fd3rogx4MFSSpWkEqkEyRicSQap7ay92an_F46ZeRDwvk7qQ47WJCcKiaUrrUgpCRNXSsMZcVbrtd1zShLWl_H34b1DhoNXfTKvhB9WenMRt65e1lyIQqMk8DFKODdzwFClDsTdDqY6sANx7lZzSt2QD__g_5_u_JIae9C8NA-DUOwPJjosUseTCRHE6W2j88XeWp6dA39C9LPxXk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752179709</pqid></control><display><type>article</type><title>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Eiselein, Larissa ; Nyunt, Tun ; Lamé, Michael W ; Ng, Kit F ; Wilson, Dennis W ; Rutledge, John C ; Aung, Hnin H</creator><contributor>Yan, Chunhong</contributor><creatorcontrib>Eiselein, Larissa ; Nyunt, Tun ; Lamé, Michael W ; Ng, Kit F ; Wilson, Dennis W ; Rutledge, John C ; Aung, Hnin H ; Yan, Chunhong</creatorcontrib><description>Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0145523</identifier><identifier>PMID: 26709509</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Activating transcription factor 3 ; Activating Transcription Factor 3 - biosynthesis ; Active Transport, Cell Nucleus ; Activin ; Animals ; Aorta ; Aorta - metabolism ; Apoptosis ; Atherosclerosis ; c-Jun protein ; Caspase ; Caspase 3 - metabolism ; Caspase-3 ; Cell cycle ; Cells, Cultured ; Cytosol ; Endothelial cells ; Endothelial Cells - metabolism ; Gene expression ; Gene regulation ; Homocysteine ; Humans ; Inflammation ; Inhibition ; Internal medicine ; Kinases ; Lipolysis ; Lipoproteins ; Lipoproteins - genetics ; Lipoproteins - metabolism ; MAP kinase ; Mice ; Oxidative stress ; p53 Protein ; Phosphorylation ; Physiology ; Proteins ; Receptors, Transforming Growth Factor beta - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Signal Transduction ; Signaling ; Smad2 protein ; Smad2 Protein - metabolism ; Smad4 protein ; Smad4 Protein - metabolism ; Stress response ; Stress, Physiological ; Stresses ; Studies ; Transcription factors ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-a ; Transforming growth factor-b1 ; Translocation ; Triglycerides ; Triglycerides - genetics ; Triglycerides - metabolism ; Tumor necrosis factor-TNF ; Tumor Suppressor Protein p53 - metabolism ; Veterinary colleges ; Veterinary medicine</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0145523-e0145523</ispartof><rights>2015 Eiselein et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Eiselein et al 2015 Eiselein et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</citedby><cites>FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1752179709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1752179709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26709509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yan, Chunhong</contributor><creatorcontrib>Eiselein, Larissa</creatorcontrib><creatorcontrib>Nyunt, Tun</creatorcontrib><creatorcontrib>Lamé, Michael W</creatorcontrib><creatorcontrib>Ng, Kit F</creatorcontrib><creatorcontrib>Wilson, Dennis W</creatorcontrib><creatorcontrib>Rutledge, John C</creatorcontrib><creatorcontrib>Aung, Hnin H</creatorcontrib><title>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.</description><subject>Accumulation</subject><subject>Activating transcription factor 3</subject><subject>Activating Transcription Factor 3 - biosynthesis</subject><subject>Active Transport, Cell Nucleus</subject><subject>Activin</subject><subject>Animals</subject><subject>Aorta</subject><subject>Aorta - metabolism</subject><subject>Apoptosis</subject><subject>Atherosclerosis</subject><subject>c-Jun protein</subject><subject>Caspase</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-3</subject><subject>Cell cycle</subject><subject>Cells, Cultured</subject><subject>Cytosol</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Homocysteine</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inhibition</subject><subject>Internal medicine</subject><subject>Kinases</subject><subject>Lipolysis</subject><subject>Lipoproteins</subject><subject>Lipoproteins - genetics</subject><subject>Lipoproteins - metabolism</subject><subject>MAP kinase</subject><subject>Mice</subject><subject>Oxidative stress</subject><subject>p53 Protein</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Receptors, Transforming Growth Factor beta - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Smad2 protein</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad4 protein</subject><subject>Smad4 Protein - metabolism</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>Stresses</subject><subject>Studies</subject><subject>Transcription factors</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-a</subject><subject>Transforming growth factor-b1</subject><subject>Translocation</subject><subject>Triglycerides</subject><subject>Triglycerides - genetics</subject><subject>Triglycerides - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Veterinary colleges</subject><subject>Veterinary medicine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9uEzEQxlcIRP_AGyCwxKWXDfZ67V1fkKqoSSNFoirhbDne2caRs15sb1FeiwfhmXCabdUiTmPN_ObzzOjLsg8ETwityJetG3yn7KR3HUwwKRkr6KvslAha5LzA9PWz90l2FsIWY0Zrzt9mJwWvsGBYnGZxNb9doqXpnd0HE9CNd82gY0CLLkVA36OH8JCOYDp0uZpRdG8UihtAq_ks__Mb3YKGPjqPblTc_FJ7lLjrYacS7Xw0Gl11jUu8NcqiKVgb3mVvWmUDvB_jefZjdrWaXufLb_PF9HKZa1bwmBNeFnULfM3pGleYVqBF2Qqq2pZS0aYKKIpLTrgSqaBAa8oZ0ayCpi5ZS8-zT0fd3rogx4MFSSpWkEqkEyRicSQap7ay92an_F46ZeRDwvk7qQ47WJCcKiaUrrUgpCRNXSsMZcVbrtd1zShLWl_H34b1DhoNXfTKvhB9WenMRt65e1lyIQqMk8DFKODdzwFClDsTdDqY6sANx7lZzSt2QD__g_5_u_JIae9C8NA-DUOwPJjosUseTCRHE6W2j88XeWp6dA39C9LPxXk</recordid><startdate>20151228</startdate><enddate>20151228</enddate><creator>Eiselein, Larissa</creator><creator>Nyunt, Tun</creator><creator>Lamé, Michael W</creator><creator>Ng, Kit F</creator><creator>Wilson, Dennis W</creator><creator>Rutledge, John C</creator><creator>Aung, Hnin H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151228</creationdate><title>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</title><author>Eiselein, Larissa ; Nyunt, Tun ; Lamé, Michael W ; Ng, Kit F ; Wilson, Dennis W ; Rutledge, John C ; Aung, Hnin H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulation</topic><topic>Activating transcription factor 3</topic><topic>Activating Transcription Factor 3 - biosynthesis</topic><topic>Active Transport, Cell Nucleus</topic><topic>Activin</topic><topic>Animals</topic><topic>Aorta</topic><topic>Aorta - metabolism</topic><topic>Apoptosis</topic><topic>Atherosclerosis</topic><topic>c-Jun protein</topic><topic>Caspase</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-3</topic><topic>Cell cycle</topic><topic>Cells, Cultured</topic><topic>Cytosol</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Homocysteine</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inhibition</topic><topic>Internal medicine</topic><topic>Kinases</topic><topic>Lipolysis</topic><topic>Lipoproteins</topic><topic>Lipoproteins - genetics</topic><topic>Lipoproteins - metabolism</topic><topic>MAP kinase</topic><topic>Mice</topic><topic>Oxidative stress</topic><topic>p53 Protein</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Receptors, Transforming Growth Factor beta - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Smad2 protein</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad4 protein</topic><topic>Smad4 Protein - metabolism</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>Stresses</topic><topic>Studies</topic><topic>Transcription factors</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-a</topic><topic>Transforming growth factor-b1</topic><topic>Translocation</topic><topic>Triglycerides</topic><topic>Triglycerides - genetics</topic><topic>Triglycerides - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Veterinary colleges</topic><topic>Veterinary medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eiselein, Larissa</creatorcontrib><creatorcontrib>Nyunt, Tun</creatorcontrib><creatorcontrib>Lamé, Michael W</creatorcontrib><creatorcontrib>Ng, Kit F</creatorcontrib><creatorcontrib>Wilson, Dennis W</creatorcontrib><creatorcontrib>Rutledge, John C</creatorcontrib><creatorcontrib>Aung, Hnin H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eiselein, Larissa</au><au>Nyunt, Tun</au><au>Lamé, Michael W</au><au>Ng, Kit F</au><au>Wilson, Dennis W</au><au>Rutledge, John C</au><au>Aung, Hnin H</au><au>Yan, Chunhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-28</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0145523</spage><epage>e0145523</epage><pages>e0145523-e0145523</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26709509</pmid><doi>10.1371/journal.pone.0145523</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-12, Vol.10 (12), p.e0145523-e0145523
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1752179709
source Publicly Available Content Database; PubMed Central
subjects Accumulation
Activating transcription factor 3
Activating Transcription Factor 3 - biosynthesis
Active Transport, Cell Nucleus
Activin
Animals
Aorta
Aorta - metabolism
Apoptosis
Atherosclerosis
c-Jun protein
Caspase
Caspase 3 - metabolism
Caspase-3
Cell cycle
Cells, Cultured
Cytosol
Endothelial cells
Endothelial Cells - metabolism
Gene expression
Gene regulation
Homocysteine
Humans
Inflammation
Inhibition
Internal medicine
Kinases
Lipolysis
Lipoproteins
Lipoproteins - genetics
Lipoproteins - metabolism
MAP kinase
Mice
Oxidative stress
p53 Protein
Phosphorylation
Physiology
Proteins
Receptors, Transforming Growth Factor beta - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
Signal Transduction
Signaling
Smad2 protein
Smad2 Protein - metabolism
Smad4 protein
Smad4 Protein - metabolism
Stress response
Stress, Physiological
Stresses
Studies
Transcription factors
Transforming Growth Factor beta1 - metabolism
Transforming growth factor-a
Transforming growth factor-b1
Translocation
Triglycerides
Triglycerides - genetics
Triglycerides - metabolism
Tumor necrosis factor-TNF
Tumor Suppressor Protein p53 - metabolism
Veterinary colleges
Veterinary medicine
title TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TGRL%20Lipolysis%20Products%20Induce%20Stress%20Protein%20ATF3%20via%20the%20TGF-%CE%B2%20Receptor%20Pathway%20in%20Human%20Aortic%20Endothelial%20Cells&rft.jtitle=PloS%20one&rft.au=Eiselein,%20Larissa&rft.date=2015-12-28&rft.volume=10&rft.issue=12&rft.spage=e0145523&rft.epage=e0145523&rft.pages=e0145523-e0145523&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0145523&rft_dat=%3Cproquest_plos_%3E1752586750%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752179709&rft_id=info:pmid/26709509&rfr_iscdi=true