Loading…
TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells
Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun...
Saved in:
Published in: | PloS one 2015-12, Vol.10 (12), p.e0145523-e0145523 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3 |
container_end_page | e0145523 |
container_issue | 12 |
container_start_page | e0145523 |
container_title | PloS one |
container_volume | 10 |
creator | Eiselein, Larissa Nyunt, Tun Lamé, Michael W Ng, Kit F Wilson, Dennis W Rutledge, John C Aung, Hnin H |
description | Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses. |
doi_str_mv | 10.1371/journal.pone.0145523 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1752179709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63a59ac8c91141d88a0e476f6cb88535</doaj_id><sourcerecordid>1752586750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</originalsourceid><addsrcrecordid>eNptks9uEzEQxlcIRP_AGyCwxKWXDfZ67V1fkKqoSSNFoirhbDne2caRs15sb1FeiwfhmXCabdUiTmPN_ObzzOjLsg8ETwityJetG3yn7KR3HUwwKRkr6KvslAha5LzA9PWz90l2FsIWY0Zrzt9mJwWvsGBYnGZxNb9doqXpnd0HE9CNd82gY0CLLkVA36OH8JCOYDp0uZpRdG8UihtAq_ks__Mb3YKGPjqPblTc_FJ7lLjrYacS7Xw0Gl11jUu8NcqiKVgb3mVvWmUDvB_jefZjdrWaXufLb_PF9HKZa1bwmBNeFnULfM3pGleYVqBF2Qqq2pZS0aYKKIpLTrgSqaBAa8oZ0ayCpi5ZS8-zT0fd3rogx4MFSSpWkEqkEyRicSQap7ay92an_F46ZeRDwvk7qQ47WJCcKiaUrrUgpCRNXSsMZcVbrtd1zShLWl_H34b1DhoNXfTKvhB9WenMRt65e1lyIQqMk8DFKODdzwFClDsTdDqY6sANx7lZzSt2QD__g_5_u_JIae9C8NA-DUOwPJjosUseTCRHE6W2j88XeWp6dA39C9LPxXk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752179709</pqid></control><display><type>article</type><title>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Eiselein, Larissa ; Nyunt, Tun ; Lamé, Michael W ; Ng, Kit F ; Wilson, Dennis W ; Rutledge, John C ; Aung, Hnin H</creator><contributor>Yan, Chunhong</contributor><creatorcontrib>Eiselein, Larissa ; Nyunt, Tun ; Lamé, Michael W ; Ng, Kit F ; Wilson, Dennis W ; Rutledge, John C ; Aung, Hnin H ; Yan, Chunhong</creatorcontrib><description>Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0145523</identifier><identifier>PMID: 26709509</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Activating transcription factor 3 ; Activating Transcription Factor 3 - biosynthesis ; Active Transport, Cell Nucleus ; Activin ; Animals ; Aorta ; Aorta - metabolism ; Apoptosis ; Atherosclerosis ; c-Jun protein ; Caspase ; Caspase 3 - metabolism ; Caspase-3 ; Cell cycle ; Cells, Cultured ; Cytosol ; Endothelial cells ; Endothelial Cells - metabolism ; Gene expression ; Gene regulation ; Homocysteine ; Humans ; Inflammation ; Inhibition ; Internal medicine ; Kinases ; Lipolysis ; Lipoproteins ; Lipoproteins - genetics ; Lipoproteins - metabolism ; MAP kinase ; Mice ; Oxidative stress ; p53 Protein ; Phosphorylation ; Physiology ; Proteins ; Receptors, Transforming Growth Factor beta - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Signal Transduction ; Signaling ; Smad2 protein ; Smad2 Protein - metabolism ; Smad4 protein ; Smad4 Protein - metabolism ; Stress response ; Stress, Physiological ; Stresses ; Studies ; Transcription factors ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-a ; Transforming growth factor-b1 ; Translocation ; Triglycerides ; Triglycerides - genetics ; Triglycerides - metabolism ; Tumor necrosis factor-TNF ; Tumor Suppressor Protein p53 - metabolism ; Veterinary colleges ; Veterinary medicine</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0145523-e0145523</ispartof><rights>2015 Eiselein et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Eiselein et al 2015 Eiselein et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</citedby><cites>FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1752179709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1752179709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26709509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yan, Chunhong</contributor><creatorcontrib>Eiselein, Larissa</creatorcontrib><creatorcontrib>Nyunt, Tun</creatorcontrib><creatorcontrib>Lamé, Michael W</creatorcontrib><creatorcontrib>Ng, Kit F</creatorcontrib><creatorcontrib>Wilson, Dennis W</creatorcontrib><creatorcontrib>Rutledge, John C</creatorcontrib><creatorcontrib>Aung, Hnin H</creatorcontrib><title>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.</description><subject>Accumulation</subject><subject>Activating transcription factor 3</subject><subject>Activating Transcription Factor 3 - biosynthesis</subject><subject>Active Transport, Cell Nucleus</subject><subject>Activin</subject><subject>Animals</subject><subject>Aorta</subject><subject>Aorta - metabolism</subject><subject>Apoptosis</subject><subject>Atherosclerosis</subject><subject>c-Jun protein</subject><subject>Caspase</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-3</subject><subject>Cell cycle</subject><subject>Cells, Cultured</subject><subject>Cytosol</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Homocysteine</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inhibition</subject><subject>Internal medicine</subject><subject>Kinases</subject><subject>Lipolysis</subject><subject>Lipoproteins</subject><subject>Lipoproteins - genetics</subject><subject>Lipoproteins - metabolism</subject><subject>MAP kinase</subject><subject>Mice</subject><subject>Oxidative stress</subject><subject>p53 Protein</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Receptors, Transforming Growth Factor beta - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Smad2 protein</subject><subject>Smad2 Protein - metabolism</subject><subject>Smad4 protein</subject><subject>Smad4 Protein - metabolism</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>Stresses</subject><subject>Studies</subject><subject>Transcription factors</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-a</subject><subject>Transforming growth factor-b1</subject><subject>Translocation</subject><subject>Triglycerides</subject><subject>Triglycerides - genetics</subject><subject>Triglycerides - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Veterinary colleges</subject><subject>Veterinary medicine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9uEzEQxlcIRP_AGyCwxKWXDfZ67V1fkKqoSSNFoirhbDne2caRs15sb1FeiwfhmXCabdUiTmPN_ObzzOjLsg8ETwityJetG3yn7KR3HUwwKRkr6KvslAha5LzA9PWz90l2FsIWY0Zrzt9mJwWvsGBYnGZxNb9doqXpnd0HE9CNd82gY0CLLkVA36OH8JCOYDp0uZpRdG8UihtAq_ks__Mb3YKGPjqPblTc_FJ7lLjrYacS7Xw0Gl11jUu8NcqiKVgb3mVvWmUDvB_jefZjdrWaXufLb_PF9HKZa1bwmBNeFnULfM3pGleYVqBF2Qqq2pZS0aYKKIpLTrgSqaBAa8oZ0ayCpi5ZS8-zT0fd3rogx4MFSSpWkEqkEyRicSQap7ay92an_F46ZeRDwvk7qQ47WJCcKiaUrrUgpCRNXSsMZcVbrtd1zShLWl_H34b1DhoNXfTKvhB9WenMRt65e1lyIQqMk8DFKODdzwFClDsTdDqY6sANx7lZzSt2QD__g_5_u_JIae9C8NA-DUOwPJjosUseTCRHE6W2j88XeWp6dA39C9LPxXk</recordid><startdate>20151228</startdate><enddate>20151228</enddate><creator>Eiselein, Larissa</creator><creator>Nyunt, Tun</creator><creator>Lamé, Michael W</creator><creator>Ng, Kit F</creator><creator>Wilson, Dennis W</creator><creator>Rutledge, John C</creator><creator>Aung, Hnin H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151228</creationdate><title>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</title><author>Eiselein, Larissa ; Nyunt, Tun ; Lamé, Michael W ; Ng, Kit F ; Wilson, Dennis W ; Rutledge, John C ; Aung, Hnin H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulation</topic><topic>Activating transcription factor 3</topic><topic>Activating Transcription Factor 3 - biosynthesis</topic><topic>Active Transport, Cell Nucleus</topic><topic>Activin</topic><topic>Animals</topic><topic>Aorta</topic><topic>Aorta - metabolism</topic><topic>Apoptosis</topic><topic>Atherosclerosis</topic><topic>c-Jun protein</topic><topic>Caspase</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-3</topic><topic>Cell cycle</topic><topic>Cells, Cultured</topic><topic>Cytosol</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Homocysteine</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inhibition</topic><topic>Internal medicine</topic><topic>Kinases</topic><topic>Lipolysis</topic><topic>Lipoproteins</topic><topic>Lipoproteins - genetics</topic><topic>Lipoproteins - metabolism</topic><topic>MAP kinase</topic><topic>Mice</topic><topic>Oxidative stress</topic><topic>p53 Protein</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Receptors, Transforming Growth Factor beta - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Smad2 protein</topic><topic>Smad2 Protein - metabolism</topic><topic>Smad4 protein</topic><topic>Smad4 Protein - metabolism</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>Stresses</topic><topic>Studies</topic><topic>Transcription factors</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-a</topic><topic>Transforming growth factor-b1</topic><topic>Translocation</topic><topic>Triglycerides</topic><topic>Triglycerides - genetics</topic><topic>Triglycerides - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Veterinary colleges</topic><topic>Veterinary medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eiselein, Larissa</creatorcontrib><creatorcontrib>Nyunt, Tun</creatorcontrib><creatorcontrib>Lamé, Michael W</creatorcontrib><creatorcontrib>Ng, Kit F</creatorcontrib><creatorcontrib>Wilson, Dennis W</creatorcontrib><creatorcontrib>Rutledge, John C</creatorcontrib><creatorcontrib>Aung, Hnin H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eiselein, Larissa</au><au>Nyunt, Tun</au><au>Lamé, Michael W</au><au>Ng, Kit F</au><au>Wilson, Dennis W</au><au>Rutledge, John C</au><au>Aung, Hnin H</au><au>Yan, Chunhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-28</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0145523</spage><epage>e0145523</epage><pages>e0145523-e0145523</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26709509</pmid><doi>10.1371/journal.pone.0145523</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-12, Vol.10 (12), p.e0145523-e0145523 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1752179709 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accumulation Activating transcription factor 3 Activating Transcription Factor 3 - biosynthesis Active Transport, Cell Nucleus Activin Animals Aorta Aorta - metabolism Apoptosis Atherosclerosis c-Jun protein Caspase Caspase 3 - metabolism Caspase-3 Cell cycle Cells, Cultured Cytosol Endothelial cells Endothelial Cells - metabolism Gene expression Gene regulation Homocysteine Humans Inflammation Inhibition Internal medicine Kinases Lipolysis Lipoproteins Lipoproteins - genetics Lipoproteins - metabolism MAP kinase Mice Oxidative stress p53 Protein Phosphorylation Physiology Proteins Receptors, Transforming Growth Factor beta - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Rodents Signal Transduction Signaling Smad2 protein Smad2 Protein - metabolism Smad4 protein Smad4 Protein - metabolism Stress response Stress, Physiological Stresses Studies Transcription factors Transforming Growth Factor beta1 - metabolism Transforming growth factor-a Transforming growth factor-b1 Translocation Triglycerides Triglycerides - genetics Triglycerides - metabolism Tumor necrosis factor-TNF Tumor Suppressor Protein p53 - metabolism Veterinary colleges Veterinary medicine |
title | TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TGRL%20Lipolysis%20Products%20Induce%20Stress%20Protein%20ATF3%20via%20the%20TGF-%CE%B2%20Receptor%20Pathway%20in%20Human%20Aortic%20Endothelial%20Cells&rft.jtitle=PloS%20one&rft.au=Eiselein,%20Larissa&rft.date=2015-12-28&rft.volume=10&rft.issue=12&rft.spage=e0145523&rft.epage=e0145523&rft.pages=e0145523-e0145523&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0145523&rft_dat=%3Cproquest_plos_%3E1752586750%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-16428fe6b63b07037ec94f93aff339ffe6ea304616a994faecc3651c57ed845f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752179709&rft_id=info:pmid/26709509&rfr_iscdi=true |