Loading…
Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature
Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1...
Saved in:
Published in: | PloS one 2015-12, Vol.10 (12), p.e0145689-e0145689 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3 |
container_end_page | e0145689 |
container_issue | 12 |
container_start_page | e0145689 |
container_title | PloS one |
container_volume | 10 |
creator | Chrzanowska-Wodnicka, Magdalena White, 2nd, Gilbert C Quilliam, Lawrence A Whitehead, Kevin J |
description | Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations.
How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice.
The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature. |
doi_str_mv | 10.1371/journal.pone.0145689 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1752353029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471193717</galeid><doaj_id>oai_doaj_org_article_4f97e187dfea472b825ed3b32fcfdbcd</doaj_id><sourcerecordid>A471193717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOndi-IFWlW1YqKmpLT0jWxB-7WTnxYicV_HucblptUA_Ih1ie530nHs8kyWuUzRGm6NPG9b4FO9-6Vs8zRIqS8SfJIeI4n5V5hp_u7Q-SFyFssqzArCyfJwd5SRHBiB0mP68asDY9u_4OQaeXsEXpMqSnIei2q8Gmxvn0m-tj7Iu-1dZtmxhIoVXpwvkGutq1qTPpom_lsI-KGwiyt9D1Xr9MnhmwQb8av0fJj8Xp9cnX2fnF2fLk-HwmacG6mVJAAfKcEFJlmEtMFKsgQ6XSmBdcUWyQRJUygKThnDNeEq20xJIyhnODj5K3O9-tdUGMhQkC0SLHBc5yHonljlAONmLr6wb8H-GgFncHzq8E-K6WVgtiONWIUWU0EJpXLC-0wlXMI42qpIpen8dsfdVoJWNBPNiJ6TTS1muxcreClJzQDEWDD6OBd796HTrR1EFqa6HVsdR3_00ZxeWAvvsHffx2I7WCeIG6NS7mlYOpOCYUxTagiEZq_ggVl9JNLWMXmTqeTwQfJ4LIdPp3t4I-BLG8uvx_9uJmyr7fY9cabLcOzvZDA4UpSHag9C4Er81DkVEmhiG4r4YYhkCMQxBlb_Yf6EF03_X4L9ZDAjM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752353029</pqid></control><display><type>article</type><title>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Chrzanowska-Wodnicka, Magdalena ; White, 2nd, Gilbert C ; Quilliam, Lawrence A ; Whitehead, Kevin J</creator><contributor>Boggon, Titus J.</contributor><creatorcontrib>Chrzanowska-Wodnicka, Magdalena ; White, 2nd, Gilbert C ; Quilliam, Lawrence A ; Whitehead, Kevin J ; Boggon, Titus J.</creatorcontrib><description>Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations.
How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice.
The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0145689</identifier><identifier>PMID: 26714318</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Analysis ; Angiogenesis ; Animals ; Biology ; Blood vessels ; Cell adhesion & migration ; Cytoskeleton ; Defects ; Degeneration ; Drosophila ; Edema ; Embryo, Mammalian - physiology ; Embryonic development ; Embryos ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelium ; Engorgement ; Gene Knockout Techniques ; Genotype & phenotype ; Guanosine triphosphatases ; Hemorrhage ; Hemorrhage - enzymology ; In vivo methods and tests ; Insects ; KRIT1 Protein ; Leukocytes ; Medicine ; Mice ; Microtubule-Associated Proteins - metabolism ; Morphogenesis ; Mutation ; Neovascularization, Physiologic ; Phenotype ; Polarity ; Pregnancy ; Proteins ; Proto-Oncogene Proteins - metabolism ; rap GTP-Binding Proteins - deficiency ; rap GTP-Binding Proteins - genetics ; rap GTP-Binding Proteins - metabolism ; rap1 GTP-Binding Proteins - deficiency ; rap1 GTP-Binding Proteins - genetics ; rap1 GTP-Binding Proteins - metabolism ; Rap1 protein ; Regulatory mechanisms (biology) ; Rodents ; Signal Transduction ; Signaling ; Stem cells ; Vascular system ; Yeast</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0145689-e0145689</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Chrzanowska-Wodnicka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Chrzanowska-Wodnicka et al 2015 Chrzanowska-Wodnicka et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</citedby><cites>FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1752353029/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1752353029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26714318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Boggon, Titus J.</contributor><creatorcontrib>Chrzanowska-Wodnicka, Magdalena</creatorcontrib><creatorcontrib>White, 2nd, Gilbert C</creatorcontrib><creatorcontrib>Quilliam, Lawrence A</creatorcontrib><creatorcontrib>Whitehead, Kevin J</creatorcontrib><title>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations.
How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice.
The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature.</description><subject>Abnormalities</subject><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biology</subject><subject>Blood vessels</subject><subject>Cell adhesion & migration</subject><subject>Cytoskeleton</subject><subject>Defects</subject><subject>Degeneration</subject><subject>Drosophila</subject><subject>Edema</subject><subject>Embryo, Mammalian - physiology</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Engorgement</subject><subject>Gene Knockout Techniques</subject><subject>Genotype & phenotype</subject><subject>Guanosine triphosphatases</subject><subject>Hemorrhage</subject><subject>Hemorrhage - enzymology</subject><subject>In vivo methods and tests</subject><subject>Insects</subject><subject>KRIT1 Protein</subject><subject>Leukocytes</subject><subject>Medicine</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Morphogenesis</subject><subject>Mutation</subject><subject>Neovascularization, Physiologic</subject><subject>Phenotype</subject><subject>Polarity</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>rap GTP-Binding Proteins - deficiency</subject><subject>rap GTP-Binding Proteins - genetics</subject><subject>rap GTP-Binding Proteins - metabolism</subject><subject>rap1 GTP-Binding Proteins - deficiency</subject><subject>rap1 GTP-Binding Proteins - genetics</subject><subject>rap1 GTP-Binding Proteins - metabolism</subject><subject>Rap1 protein</subject><subject>Regulatory mechanisms (biology)</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Vascular system</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOndi-IFWlW1YqKmpLT0jWxB-7WTnxYicV_HucblptUA_Ih1ie530nHs8kyWuUzRGm6NPG9b4FO9-6Vs8zRIqS8SfJIeI4n5V5hp_u7Q-SFyFssqzArCyfJwd5SRHBiB0mP68asDY9u_4OQaeXsEXpMqSnIei2q8Gmxvn0m-tj7Iu-1dZtmxhIoVXpwvkGutq1qTPpom_lsI-KGwiyt9D1Xr9MnhmwQb8av0fJj8Xp9cnX2fnF2fLk-HwmacG6mVJAAfKcEFJlmEtMFKsgQ6XSmBdcUWyQRJUygKThnDNeEq20xJIyhnODj5K3O9-tdUGMhQkC0SLHBc5yHonljlAONmLr6wb8H-GgFncHzq8E-K6WVgtiONWIUWU0EJpXLC-0wlXMI42qpIpen8dsfdVoJWNBPNiJ6TTS1muxcreClJzQDEWDD6OBd796HTrR1EFqa6HVsdR3_00ZxeWAvvsHffx2I7WCeIG6NS7mlYOpOCYUxTagiEZq_ggVl9JNLWMXmTqeTwQfJ4LIdPp3t4I-BLG8uvx_9uJmyr7fY9cabLcOzvZDA4UpSHag9C4Er81DkVEmhiG4r4YYhkCMQxBlb_Yf6EF03_X4L9ZDAjM</recordid><startdate>20151229</startdate><enddate>20151229</enddate><creator>Chrzanowska-Wodnicka, Magdalena</creator><creator>White, 2nd, Gilbert C</creator><creator>Quilliam, Lawrence A</creator><creator>Whitehead, Kevin J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151229</creationdate><title>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</title><author>Chrzanowska-Wodnicka, Magdalena ; White, 2nd, Gilbert C ; Quilliam, Lawrence A ; Whitehead, Kevin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abnormalities</topic><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biology</topic><topic>Blood vessels</topic><topic>Cell adhesion & migration</topic><topic>Cytoskeleton</topic><topic>Defects</topic><topic>Degeneration</topic><topic>Drosophila</topic><topic>Edema</topic><topic>Embryo, Mammalian - physiology</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Engorgement</topic><topic>Gene Knockout Techniques</topic><topic>Genotype & phenotype</topic><topic>Guanosine triphosphatases</topic><topic>Hemorrhage</topic><topic>Hemorrhage - enzymology</topic><topic>In vivo methods and tests</topic><topic>Insects</topic><topic>KRIT1 Protein</topic><topic>Leukocytes</topic><topic>Medicine</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Morphogenesis</topic><topic>Mutation</topic><topic>Neovascularization, Physiologic</topic><topic>Phenotype</topic><topic>Polarity</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>rap GTP-Binding Proteins - deficiency</topic><topic>rap GTP-Binding Proteins - genetics</topic><topic>rap GTP-Binding Proteins - metabolism</topic><topic>rap1 GTP-Binding Proteins - deficiency</topic><topic>rap1 GTP-Binding Proteins - genetics</topic><topic>rap1 GTP-Binding Proteins - metabolism</topic><topic>Rap1 protein</topic><topic>Regulatory mechanisms (biology)</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Vascular system</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrzanowska-Wodnicka, Magdalena</creatorcontrib><creatorcontrib>White, 2nd, Gilbert C</creatorcontrib><creatorcontrib>Quilliam, Lawrence A</creatorcontrib><creatorcontrib>Whitehead, Kevin J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrzanowska-Wodnicka, Magdalena</au><au>White, 2nd, Gilbert C</au><au>Quilliam, Lawrence A</au><au>Whitehead, Kevin J</au><au>Boggon, Titus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-29</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0145689</spage><epage>e0145689</epage><pages>e0145689-e0145689</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations.
How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice.
The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26714318</pmid><doi>10.1371/journal.pone.0145689</doi><tpages>e0145689</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-12, Vol.10 (12), p.e0145689-e0145689 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1752353029 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Abnormalities Analysis Angiogenesis Animals Biology Blood vessels Cell adhesion & migration Cytoskeleton Defects Degeneration Drosophila Edema Embryo, Mammalian - physiology Embryonic development Embryos Endothelial cells Endothelial Cells - cytology Endothelial Cells - metabolism Endothelium Engorgement Gene Knockout Techniques Genotype & phenotype Guanosine triphosphatases Hemorrhage Hemorrhage - enzymology In vivo methods and tests Insects KRIT1 Protein Leukocytes Medicine Mice Microtubule-Associated Proteins - metabolism Morphogenesis Mutation Neovascularization, Physiologic Phenotype Polarity Pregnancy Proteins Proto-Oncogene Proteins - metabolism rap GTP-Binding Proteins - deficiency rap GTP-Binding Proteins - genetics rap GTP-Binding Proteins - metabolism rap1 GTP-Binding Proteins - deficiency rap1 GTP-Binding Proteins - genetics rap1 GTP-Binding Proteins - metabolism Rap1 protein Regulatory mechanisms (biology) Rodents Signal Transduction Signaling Stem cells Vascular system Yeast |
title | Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20GTPase%20Rap1%20Is%20Essential%20for%20Mouse%20Development%20and%20Formation%20of%20Functional%20Vasculature&rft.jtitle=PloS%20one&rft.au=Chrzanowska-Wodnicka,%20Magdalena&rft.date=2015-12-29&rft.volume=10&rft.issue=12&rft.spage=e0145689&rft.epage=e0145689&rft.pages=e0145689-e0145689&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0145689&rft_dat=%3Cgale_plos_%3EA471193717%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752353029&rft_id=info:pmid/26714318&rft_galeid=A471193717&rfr_iscdi=true |