Loading…

Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature

Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-12, Vol.10 (12), p.e0145689-e0145689
Main Authors: Chrzanowska-Wodnicka, Magdalena, White, 2nd, Gilbert C, Quilliam, Lawrence A, Whitehead, Kevin J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3
cites cdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3
container_end_page e0145689
container_issue 12
container_start_page e0145689
container_title PloS one
container_volume 10
creator Chrzanowska-Wodnicka, Magdalena
White, 2nd, Gilbert C
Quilliam, Lawrence A
Whitehead, Kevin J
description Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature.
doi_str_mv 10.1371/journal.pone.0145689
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1752353029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471193717</galeid><doaj_id>oai_doaj_org_article_4f97e187dfea472b825ed3b32fcfdbcd</doaj_id><sourcerecordid>A471193717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOndi-IFWlW1YqKmpLT0jWxB-7WTnxYicV_HucblptUA_Ih1ie530nHs8kyWuUzRGm6NPG9b4FO9-6Vs8zRIqS8SfJIeI4n5V5hp_u7Q-SFyFssqzArCyfJwd5SRHBiB0mP68asDY9u_4OQaeXsEXpMqSnIei2q8Gmxvn0m-tj7Iu-1dZtmxhIoVXpwvkGutq1qTPpom_lsI-KGwiyt9D1Xr9MnhmwQb8av0fJj8Xp9cnX2fnF2fLk-HwmacG6mVJAAfKcEFJlmEtMFKsgQ6XSmBdcUWyQRJUygKThnDNeEq20xJIyhnODj5K3O9-tdUGMhQkC0SLHBc5yHonljlAONmLr6wb8H-GgFncHzq8E-K6WVgtiONWIUWU0EJpXLC-0wlXMI42qpIpen8dsfdVoJWNBPNiJ6TTS1muxcreClJzQDEWDD6OBd796HTrR1EFqa6HVsdR3_00ZxeWAvvsHffx2I7WCeIG6NS7mlYOpOCYUxTagiEZq_ggVl9JNLWMXmTqeTwQfJ4LIdPp3t4I-BLG8uvx_9uJmyr7fY9cabLcOzvZDA4UpSHag9C4Er81DkVEmhiG4r4YYhkCMQxBlb_Yf6EF03_X4L9ZDAjM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752353029</pqid></control><display><type>article</type><title>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Chrzanowska-Wodnicka, Magdalena ; White, 2nd, Gilbert C ; Quilliam, Lawrence A ; Whitehead, Kevin J</creator><contributor>Boggon, Titus J.</contributor><creatorcontrib>Chrzanowska-Wodnicka, Magdalena ; White, 2nd, Gilbert C ; Quilliam, Lawrence A ; Whitehead, Kevin J ; Boggon, Titus J.</creatorcontrib><description>Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0145689</identifier><identifier>PMID: 26714318</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Analysis ; Angiogenesis ; Animals ; Biology ; Blood vessels ; Cell adhesion &amp; migration ; Cytoskeleton ; Defects ; Degeneration ; Drosophila ; Edema ; Embryo, Mammalian - physiology ; Embryonic development ; Embryos ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelium ; Engorgement ; Gene Knockout Techniques ; Genotype &amp; phenotype ; Guanosine triphosphatases ; Hemorrhage ; Hemorrhage - enzymology ; In vivo methods and tests ; Insects ; KRIT1 Protein ; Leukocytes ; Medicine ; Mice ; Microtubule-Associated Proteins - metabolism ; Morphogenesis ; Mutation ; Neovascularization, Physiologic ; Phenotype ; Polarity ; Pregnancy ; Proteins ; Proto-Oncogene Proteins - metabolism ; rap GTP-Binding Proteins - deficiency ; rap GTP-Binding Proteins - genetics ; rap GTP-Binding Proteins - metabolism ; rap1 GTP-Binding Proteins - deficiency ; rap1 GTP-Binding Proteins - genetics ; rap1 GTP-Binding Proteins - metabolism ; Rap1 protein ; Regulatory mechanisms (biology) ; Rodents ; Signal Transduction ; Signaling ; Stem cells ; Vascular system ; Yeast</subject><ispartof>PloS one, 2015-12, Vol.10 (12), p.e0145689-e0145689</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Chrzanowska-Wodnicka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Chrzanowska-Wodnicka et al 2015 Chrzanowska-Wodnicka et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</citedby><cites>FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1752353029/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1752353029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26714318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Boggon, Titus J.</contributor><creatorcontrib>Chrzanowska-Wodnicka, Magdalena</creatorcontrib><creatorcontrib>White, 2nd, Gilbert C</creatorcontrib><creatorcontrib>Quilliam, Lawrence A</creatorcontrib><creatorcontrib>Whitehead, Kevin J</creatorcontrib><title>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature.</description><subject>Abnormalities</subject><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biology</subject><subject>Blood vessels</subject><subject>Cell adhesion &amp; migration</subject><subject>Cytoskeleton</subject><subject>Defects</subject><subject>Degeneration</subject><subject>Drosophila</subject><subject>Edema</subject><subject>Embryo, Mammalian - physiology</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Engorgement</subject><subject>Gene Knockout Techniques</subject><subject>Genotype &amp; phenotype</subject><subject>Guanosine triphosphatases</subject><subject>Hemorrhage</subject><subject>Hemorrhage - enzymology</subject><subject>In vivo methods and tests</subject><subject>Insects</subject><subject>KRIT1 Protein</subject><subject>Leukocytes</subject><subject>Medicine</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Morphogenesis</subject><subject>Mutation</subject><subject>Neovascularization, Physiologic</subject><subject>Phenotype</subject><subject>Polarity</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>rap GTP-Binding Proteins - deficiency</subject><subject>rap GTP-Binding Proteins - genetics</subject><subject>rap GTP-Binding Proteins - metabolism</subject><subject>rap1 GTP-Binding Proteins - deficiency</subject><subject>rap1 GTP-Binding Proteins - genetics</subject><subject>rap1 GTP-Binding Proteins - metabolism</subject><subject>Rap1 protein</subject><subject>Regulatory mechanisms (biology)</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Vascular system</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2CWOndi-IFWlW1YqKmpLT0jWxB-7WTnxYicV_HucblptUA_Ih1ie530nHs8kyWuUzRGm6NPG9b4FO9-6Vs8zRIqS8SfJIeI4n5V5hp_u7Q-SFyFssqzArCyfJwd5SRHBiB0mP68asDY9u_4OQaeXsEXpMqSnIei2q8Gmxvn0m-tj7Iu-1dZtmxhIoVXpwvkGutq1qTPpom_lsI-KGwiyt9D1Xr9MnhmwQb8av0fJj8Xp9cnX2fnF2fLk-HwmacG6mVJAAfKcEFJlmEtMFKsgQ6XSmBdcUWyQRJUygKThnDNeEq20xJIyhnODj5K3O9-tdUGMhQkC0SLHBc5yHonljlAONmLr6wb8H-GgFncHzq8E-K6WVgtiONWIUWU0EJpXLC-0wlXMI42qpIpen8dsfdVoJWNBPNiJ6TTS1muxcreClJzQDEWDD6OBd796HTrR1EFqa6HVsdR3_00ZxeWAvvsHffx2I7WCeIG6NS7mlYOpOCYUxTagiEZq_ggVl9JNLWMXmTqeTwQfJ4LIdPp3t4I-BLG8uvx_9uJmyr7fY9cabLcOzvZDA4UpSHag9C4Er81DkVEmhiG4r4YYhkCMQxBlb_Yf6EF03_X4L9ZDAjM</recordid><startdate>20151229</startdate><enddate>20151229</enddate><creator>Chrzanowska-Wodnicka, Magdalena</creator><creator>White, 2nd, Gilbert C</creator><creator>Quilliam, Lawrence A</creator><creator>Whitehead, Kevin J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20151229</creationdate><title>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</title><author>Chrzanowska-Wodnicka, Magdalena ; White, 2nd, Gilbert C ; Quilliam, Lawrence A ; Whitehead, Kevin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abnormalities</topic><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biology</topic><topic>Blood vessels</topic><topic>Cell adhesion &amp; migration</topic><topic>Cytoskeleton</topic><topic>Defects</topic><topic>Degeneration</topic><topic>Drosophila</topic><topic>Edema</topic><topic>Embryo, Mammalian - physiology</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Engorgement</topic><topic>Gene Knockout Techniques</topic><topic>Genotype &amp; phenotype</topic><topic>Guanosine triphosphatases</topic><topic>Hemorrhage</topic><topic>Hemorrhage - enzymology</topic><topic>In vivo methods and tests</topic><topic>Insects</topic><topic>KRIT1 Protein</topic><topic>Leukocytes</topic><topic>Medicine</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Morphogenesis</topic><topic>Mutation</topic><topic>Neovascularization, Physiologic</topic><topic>Phenotype</topic><topic>Polarity</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>rap GTP-Binding Proteins - deficiency</topic><topic>rap GTP-Binding Proteins - genetics</topic><topic>rap GTP-Binding Proteins - metabolism</topic><topic>rap1 GTP-Binding Proteins - deficiency</topic><topic>rap1 GTP-Binding Proteins - genetics</topic><topic>rap1 GTP-Binding Proteins - metabolism</topic><topic>Rap1 protein</topic><topic>Regulatory mechanisms (biology)</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Vascular system</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrzanowska-Wodnicka, Magdalena</creatorcontrib><creatorcontrib>White, 2nd, Gilbert C</creatorcontrib><creatorcontrib>Quilliam, Lawrence A</creatorcontrib><creatorcontrib>Whitehead, Kevin J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrzanowska-Wodnicka, Magdalena</au><au>White, 2nd, Gilbert C</au><au>Quilliam, Lawrence A</au><au>Whitehead, Kevin J</au><au>Boggon, Titus J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-12-29</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>e0145689</spage><epage>e0145689</epage><pages>e0145689-e0145689</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium-for the life-supporting function of the vasculature.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26714318</pmid><doi>10.1371/journal.pone.0145689</doi><tpages>e0145689</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-12, Vol.10 (12), p.e0145689-e0145689
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1752353029
source ProQuest - Publicly Available Content Database; PubMed Central
subjects Abnormalities
Analysis
Angiogenesis
Animals
Biology
Blood vessels
Cell adhesion & migration
Cytoskeleton
Defects
Degeneration
Drosophila
Edema
Embryo, Mammalian - physiology
Embryonic development
Embryos
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - metabolism
Endothelium
Engorgement
Gene Knockout Techniques
Genotype & phenotype
Guanosine triphosphatases
Hemorrhage
Hemorrhage - enzymology
In vivo methods and tests
Insects
KRIT1 Protein
Leukocytes
Medicine
Mice
Microtubule-Associated Proteins - metabolism
Morphogenesis
Mutation
Neovascularization, Physiologic
Phenotype
Polarity
Pregnancy
Proteins
Proto-Oncogene Proteins - metabolism
rap GTP-Binding Proteins - deficiency
rap GTP-Binding Proteins - genetics
rap GTP-Binding Proteins - metabolism
rap1 GTP-Binding Proteins - deficiency
rap1 GTP-Binding Proteins - genetics
rap1 GTP-Binding Proteins - metabolism
Rap1 protein
Regulatory mechanisms (biology)
Rodents
Signal Transduction
Signaling
Stem cells
Vascular system
Yeast
title Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20GTPase%20Rap1%20Is%20Essential%20for%20Mouse%20Development%20and%20Formation%20of%20Functional%20Vasculature&rft.jtitle=PloS%20one&rft.au=Chrzanowska-Wodnicka,%20Magdalena&rft.date=2015-12-29&rft.volume=10&rft.issue=12&rft.spage=e0145689&rft.epage=e0145689&rft.pages=e0145689-e0145689&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0145689&rft_dat=%3Cgale_plos_%3EA471193717%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-dda7aa22444b039c34d8ba016de3959d73f1c1bdfa1cf9998964edec3c78832f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1752353029&rft_id=info:pmid/26714318&rft_galeid=A471193717&rfr_iscdi=true