Loading…
Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics
Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucocil...
Saved in:
Published in: | PloS one 2016-01, Vol.11 (1), p.e0146192-e0146192 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c761t-b68c2b4a5527a8c4463d2436114330d402cef5dec707be242921b12d456264083 |
---|---|
cites | cdi_FETCH-LOGICAL-c761t-b68c2b4a5527a8c4463d2436114330d402cef5dec707be242921b12d456264083 |
container_end_page | e0146192 |
container_issue | 1 |
container_start_page | e0146192 |
container_title | PloS one |
container_volume | 11 |
creator | Gela, Anele Bhongir, Ravi K V Mori, Michiko Keenan, Paul Mörgelin, Matthias Erjefält, Jonas S Herwald, Heiko Egesten, Arne Kasetty, Gopinath |
description | Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucociliary clearance and structural remodeling of the airways. In addition, antimicrobial proteins that are constitutively expressed or induced during inflammatory conditions are an important part of the airway innate host defense. In the present study, we show that osteopontin (OPN), a multifunctional glycoprotein that is highly upregulated in the airways of COPD patients co-localizes with several antimicrobial proteins expressed in the airways. In vitro, OPN bound lactoferrin, secretory leukocyte peptidase inhibitor (SLPI), midkine, human beta defensin-3 (hBD-3), and thymic stromal lymphopoietin (TSLP) but showed low or no affinity for lysozyme and LL-37. Binding of OPN impaired the antibacterial activity against the important bacterial pathogens Streptococcus pneumoniae and Pseudomonas aeruginosa. Interestingly, OPN reduced lysozyme-induced killing of S. pneumoniae, a finding that could be explained by binding of OPN to the bacterial surface, thereby shielding the bacteria. A fragment of OPN generated by elastase of P. aeruginosa retained some inhibitory effect. Some antimicrobial proteins have additional functions. However, the muramidase-activity of lysozyme and the protease inhibitory function of SLPI were not affected by OPN. Taken together, OPN can contribute to the impairment of innate host defense by interfering with the function of antimicrobial proteins, thus increasing the vulnerability to acquire infections during COPD. |
doi_str_mv | 10.1371/journal.pone.0146192 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1753448690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A439084948</galeid><doaj_id>oai_doaj_org_article_2a6fbbcd26a84741abd8ce489fbbf045</doaj_id><sourcerecordid>A439084948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c761t-b68c2b4a5527a8c4463d2436114330d402cef5dec707be242921b12d456264083</originalsourceid><addsrcrecordid>eNqNk12L00AUhoMo7rr6D0QDguhF63xlktwIpa4aKFR09XaYTE7aKUmmzkxa---dbrNLI3shYUg4ec6TyZucKHqJ0RTTFH_YmN52spluTQdThBnHOXkUXeKckgkniD4-u76Injm3QSihGedPowvCU4pTxi-j_dJ5MMHhdRffrKWPCxdfN7CTHqo41Pwa4pm2e3lwcdVb3a3i-fLbp7hot1Jbd7ofukupPFgtm3imvN5pf4hNHc9N25ouLrou-E6cNl4r9zx6UsvGwYvhfBX9_Hx9M_86WSy_FPPZYqJSjv2k5JkiJZNJQlKZKcY4rQijHGNGKaoYIgrqpAKVorQEwkhOcIlJxRJOOEMZvYpen7zbxjgxZOYEThPKWMZzFIjiRFRGbsTW6lbagzBSi9uCsSshbdhyA4JIXpelqgiXGUsZlmWVKWBZHqo1YklwLU4ut4dtX45sTb8NqwxLOBB5znmNMyxyBSAYrUFIXEuBOAce3oWonATdx2HzfdlCpaDzVjYj6_hOp9diZXaCpZhgSoPg3SCw5ncPzotWOwVNIzsw_W0MLCGUoDSgb_5BHw5roFYy5KG72oTnqqNUzBjNUcZydgx9-gAVjgparcL_WutQHzW8HzUExsMfv5K9c6L48f3_2eWvMfv2jF2DbPzamab32nRuDLITqKxxzkJ9HzJG4jhud2mI47iJYdxC26vzD3TfdDdf9C8e1yRj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753448690</pqid></control><display><type>article</type><title>Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Gela, Anele ; Bhongir, Ravi K V ; Mori, Michiko ; Keenan, Paul ; Mörgelin, Matthias ; Erjefält, Jonas S ; Herwald, Heiko ; Egesten, Arne ; Kasetty, Gopinath</creator><contributor>Hartl, Dominik</contributor><creatorcontrib>Gela, Anele ; Bhongir, Ravi K V ; Mori, Michiko ; Keenan, Paul ; Mörgelin, Matthias ; Erjefält, Jonas S ; Herwald, Heiko ; Egesten, Arne ; Kasetty, Gopinath ; Hartl, Dominik</creatorcontrib><description>Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucociliary clearance and structural remodeling of the airways. In addition, antimicrobial proteins that are constitutively expressed or induced during inflammatory conditions are an important part of the airway innate host defense. In the present study, we show that osteopontin (OPN), a multifunctional glycoprotein that is highly upregulated in the airways of COPD patients co-localizes with several antimicrobial proteins expressed in the airways. In vitro, OPN bound lactoferrin, secretory leukocyte peptidase inhibitor (SLPI), midkine, human beta defensin-3 (hBD-3), and thymic stromal lymphopoietin (TSLP) but showed low or no affinity for lysozyme and LL-37. Binding of OPN impaired the antibacterial activity against the important bacterial pathogens Streptococcus pneumoniae and Pseudomonas aeruginosa. Interestingly, OPN reduced lysozyme-induced killing of S. pneumoniae, a finding that could be explained by binding of OPN to the bacterial surface, thereby shielding the bacteria. A fragment of OPN generated by elastase of P. aeruginosa retained some inhibitory effect. Some antimicrobial proteins have additional functions. However, the muramidase-activity of lysozyme and the protease inhibitory function of SLPI were not affected by OPN. Taken together, OPN can contribute to the impairment of innate host defense by interfering with the function of antimicrobial proteins, thus increasing the vulnerability to acquire infections during COPD.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0146192</identifier><identifier>PMID: 26731746</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibacterial activity ; Antibiotics ; Antimicrobial agents ; Bacteria ; Bacterial infections ; Bacterial Infections - complications ; Bacterial Infections - metabolism ; beta-Defensins - metabolism ; Binding ; Biocompatibility ; Biomedical materials ; Care and treatment ; Chemokines ; Chronic obstructive lung disease ; Chronic obstructive pulmonary disease ; Clinical Medicine ; Complications and side effects ; Cystic fibrosis ; Cytokines ; Cytokines - metabolism ; Elastase ; Glycoproteins ; Growth factors ; Haemophilus influenzae ; Health aspects ; Health risks ; Humans ; Immunoglobulins ; Infections ; Infectious diseases ; Inflammation ; Klinisk medicin ; Lactoferrin ; Lactoferrin - metabolism ; Leukocytes ; Lung - metabolism ; Lung diseases ; Lungmedicin och allergi ; Lysozyme ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Medicine ; Midkine ; Molecular biology ; Neutrophils ; Obstructive lung disease ; Osteopontin ; Osteopontin - metabolism ; Peptidase ; Protein Binding ; Proteins ; Pseudomonas aeruginosa ; Pulmonary Disease, Chronic Obstructive - complications ; Pulmonary Disease, Chronic Obstructive - metabolism ; Pulmonary Disease, Chronic Obstructive - microbiology ; R&D ; Research & development ; Respiratory Medicine and Allergy ; Respiratory tract ; Respiratory tract diseases ; Respiratory Tract Infections - complications ; Respiratory Tract Infections - metabolism ; Respiratory Tract Infections - microbiology ; Risk factors ; Secretory Leukocyte Peptidase Inhibitor - metabolism ; Shielding ; Streptococcus infections ; Streptococcus pneumoniae ; Streptococcus pneumoniae - isolation & purification ; Thymic stromal lymphopoietin ; Thymus ; Treatment Failure ; Up-Regulation</subject><ispartof>PloS one, 2016-01, Vol.11 (1), p.e0146192-e0146192</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Gela et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Gela et al 2016 Gela et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c761t-b68c2b4a5527a8c4463d2436114330d402cef5dec707be242921b12d456264083</citedby><cites>FETCH-LOGICAL-c761t-b68c2b4a5527a8c4463d2436114330d402cef5dec707be242921b12d456264083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1753448690/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1753448690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26731746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/8593143$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Hartl, Dominik</contributor><creatorcontrib>Gela, Anele</creatorcontrib><creatorcontrib>Bhongir, Ravi K V</creatorcontrib><creatorcontrib>Mori, Michiko</creatorcontrib><creatorcontrib>Keenan, Paul</creatorcontrib><creatorcontrib>Mörgelin, Matthias</creatorcontrib><creatorcontrib>Erjefält, Jonas S</creatorcontrib><creatorcontrib>Herwald, Heiko</creatorcontrib><creatorcontrib>Egesten, Arne</creatorcontrib><creatorcontrib>Kasetty, Gopinath</creatorcontrib><title>Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucociliary clearance and structural remodeling of the airways. In addition, antimicrobial proteins that are constitutively expressed or induced during inflammatory conditions are an important part of the airway innate host defense. In the present study, we show that osteopontin (OPN), a multifunctional glycoprotein that is highly upregulated in the airways of COPD patients co-localizes with several antimicrobial proteins expressed in the airways. In vitro, OPN bound lactoferrin, secretory leukocyte peptidase inhibitor (SLPI), midkine, human beta defensin-3 (hBD-3), and thymic stromal lymphopoietin (TSLP) but showed low or no affinity for lysozyme and LL-37. Binding of OPN impaired the antibacterial activity against the important bacterial pathogens Streptococcus pneumoniae and Pseudomonas aeruginosa. Interestingly, OPN reduced lysozyme-induced killing of S. pneumoniae, a finding that could be explained by binding of OPN to the bacterial surface, thereby shielding the bacteria. A fragment of OPN generated by elastase of P. aeruginosa retained some inhibitory effect. Some antimicrobial proteins have additional functions. However, the muramidase-activity of lysozyme and the protease inhibitory function of SLPI were not affected by OPN. Taken together, OPN can contribute to the impairment of innate host defense by interfering with the function of antimicrobial proteins, thus increasing the vulnerability to acquire infections during COPD.</description><subject>Antibacterial activity</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bacterial Infections - complications</subject><subject>Bacterial Infections - metabolism</subject><subject>beta-Defensins - metabolism</subject><subject>Binding</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Care and treatment</subject><subject>Chemokines</subject><subject>Chronic obstructive lung disease</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Clinical Medicine</subject><subject>Complications and side effects</subject><subject>Cystic fibrosis</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Elastase</subject><subject>Glycoproteins</subject><subject>Growth factors</subject><subject>Haemophilus influenzae</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Inflammation</subject><subject>Klinisk medicin</subject><subject>Lactoferrin</subject><subject>Lactoferrin - metabolism</subject><subject>Leukocytes</subject><subject>Lung - metabolism</subject><subject>Lung diseases</subject><subject>Lungmedicin och allergi</subject><subject>Lysozyme</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine</subject><subject>Midkine</subject><subject>Molecular biology</subject><subject>Neutrophils</subject><subject>Obstructive lung disease</subject><subject>Osteopontin</subject><subject>Osteopontin - metabolism</subject><subject>Peptidase</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pulmonary Disease, Chronic Obstructive - complications</subject><subject>Pulmonary Disease, Chronic Obstructive - metabolism</subject><subject>Pulmonary Disease, Chronic Obstructive - microbiology</subject><subject>R&D</subject><subject>Research & development</subject><subject>Respiratory Medicine and Allergy</subject><subject>Respiratory tract</subject><subject>Respiratory tract diseases</subject><subject>Respiratory Tract Infections - complications</subject><subject>Respiratory Tract Infections - metabolism</subject><subject>Respiratory Tract Infections - microbiology</subject><subject>Risk factors</subject><subject>Secretory Leukocyte Peptidase Inhibitor - metabolism</subject><subject>Shielding</subject><subject>Streptococcus infections</subject><subject>Streptococcus pneumoniae</subject><subject>Streptococcus pneumoniae - isolation & purification</subject><subject>Thymic stromal lymphopoietin</subject><subject>Thymus</subject><subject>Treatment Failure</subject><subject>Up-Regulation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L00AUhoMo7rr6D0QDguhF63xlktwIpa4aKFR09XaYTE7aKUmmzkxa---dbrNLI3shYUg4ec6TyZucKHqJ0RTTFH_YmN52spluTQdThBnHOXkUXeKckgkniD4-u76Injm3QSihGedPowvCU4pTxi-j_dJ5MMHhdRffrKWPCxdfN7CTHqo41Pwa4pm2e3lwcdVb3a3i-fLbp7hot1Jbd7ofukupPFgtm3imvN5pf4hNHc9N25ouLrou-E6cNl4r9zx6UsvGwYvhfBX9_Hx9M_86WSy_FPPZYqJSjv2k5JkiJZNJQlKZKcY4rQijHGNGKaoYIgrqpAKVorQEwkhOcIlJxRJOOEMZvYpen7zbxjgxZOYEThPKWMZzFIjiRFRGbsTW6lbagzBSi9uCsSshbdhyA4JIXpelqgiXGUsZlmWVKWBZHqo1YklwLU4ut4dtX45sTb8NqwxLOBB5znmNMyxyBSAYrUFIXEuBOAce3oWonATdx2HzfdlCpaDzVjYj6_hOp9diZXaCpZhgSoPg3SCw5ncPzotWOwVNIzsw_W0MLCGUoDSgb_5BHw5roFYy5KG72oTnqqNUzBjNUcZydgx9-gAVjgparcL_WutQHzW8HzUExsMfv5K9c6L48f3_2eWvMfv2jF2DbPzamab32nRuDLITqKxxzkJ9HzJG4jhud2mI47iJYdxC26vzD3TfdDdf9C8e1yRj</recordid><startdate>20160105</startdate><enddate>20160105</enddate><creator>Gela, Anele</creator><creator>Bhongir, Ravi K V</creator><creator>Mori, Michiko</creator><creator>Keenan, Paul</creator><creator>Mörgelin, Matthias</creator><creator>Erjefält, Jonas S</creator><creator>Herwald, Heiko</creator><creator>Egesten, Arne</creator><creator>Kasetty, Gopinath</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20160105</creationdate><title>Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics</title><author>Gela, Anele ; Bhongir, Ravi K V ; Mori, Michiko ; Keenan, Paul ; Mörgelin, Matthias ; Erjefält, Jonas S ; Herwald, Heiko ; Egesten, Arne ; Kasetty, Gopinath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c761t-b68c2b4a5527a8c4463d2436114330d402cef5dec707be242921b12d456264083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antibacterial activity</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bacterial Infections - complications</topic><topic>Bacterial Infections - metabolism</topic><topic>beta-Defensins - metabolism</topic><topic>Binding</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Care and treatment</topic><topic>Chemokines</topic><topic>Chronic obstructive lung disease</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Clinical Medicine</topic><topic>Complications and side effects</topic><topic>Cystic fibrosis</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Elastase</topic><topic>Glycoproteins</topic><topic>Growth factors</topic><topic>Haemophilus influenzae</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Inflammation</topic><topic>Klinisk medicin</topic><topic>Lactoferrin</topic><topic>Lactoferrin - metabolism</topic><topic>Leukocytes</topic><topic>Lung - metabolism</topic><topic>Lung diseases</topic><topic>Lungmedicin och allergi</topic><topic>Lysozyme</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine</topic><topic>Midkine</topic><topic>Molecular biology</topic><topic>Neutrophils</topic><topic>Obstructive lung disease</topic><topic>Osteopontin</topic><topic>Osteopontin - metabolism</topic><topic>Peptidase</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pulmonary Disease, Chronic Obstructive - complications</topic><topic>Pulmonary Disease, Chronic Obstructive - metabolism</topic><topic>Pulmonary Disease, Chronic Obstructive - microbiology</topic><topic>R&D</topic><topic>Research & development</topic><topic>Respiratory Medicine and Allergy</topic><topic>Respiratory tract</topic><topic>Respiratory tract diseases</topic><topic>Respiratory Tract Infections - complications</topic><topic>Respiratory Tract Infections - metabolism</topic><topic>Respiratory Tract Infections - microbiology</topic><topic>Risk factors</topic><topic>Secretory Leukocyte Peptidase Inhibitor - metabolism</topic><topic>Shielding</topic><topic>Streptococcus infections</topic><topic>Streptococcus pneumoniae</topic><topic>Streptococcus pneumoniae - isolation & purification</topic><topic>Thymic stromal lymphopoietin</topic><topic>Thymus</topic><topic>Treatment Failure</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gela, Anele</creatorcontrib><creatorcontrib>Bhongir, Ravi K V</creatorcontrib><creatorcontrib>Mori, Michiko</creatorcontrib><creatorcontrib>Keenan, Paul</creatorcontrib><creatorcontrib>Mörgelin, Matthias</creatorcontrib><creatorcontrib>Erjefält, Jonas S</creatorcontrib><creatorcontrib>Herwald, Heiko</creatorcontrib><creatorcontrib>Egesten, Arne</creatorcontrib><creatorcontrib>Kasetty, Gopinath</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gela, Anele</au><au>Bhongir, Ravi K V</au><au>Mori, Michiko</au><au>Keenan, Paul</au><au>Mörgelin, Matthias</au><au>Erjefält, Jonas S</au><au>Herwald, Heiko</au><au>Egesten, Arne</au><au>Kasetty, Gopinath</au><au>Hartl, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-01-05</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>e0146192</spage><epage>e0146192</epage><pages>e0146192-e0146192</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucociliary clearance and structural remodeling of the airways. In addition, antimicrobial proteins that are constitutively expressed or induced during inflammatory conditions are an important part of the airway innate host defense. In the present study, we show that osteopontin (OPN), a multifunctional glycoprotein that is highly upregulated in the airways of COPD patients co-localizes with several antimicrobial proteins expressed in the airways. In vitro, OPN bound lactoferrin, secretory leukocyte peptidase inhibitor (SLPI), midkine, human beta defensin-3 (hBD-3), and thymic stromal lymphopoietin (TSLP) but showed low or no affinity for lysozyme and LL-37. Binding of OPN impaired the antibacterial activity against the important bacterial pathogens Streptococcus pneumoniae and Pseudomonas aeruginosa. Interestingly, OPN reduced lysozyme-induced killing of S. pneumoniae, a finding that could be explained by binding of OPN to the bacterial surface, thereby shielding the bacteria. A fragment of OPN generated by elastase of P. aeruginosa retained some inhibitory effect. Some antimicrobial proteins have additional functions. However, the muramidase-activity of lysozyme and the protease inhibitory function of SLPI were not affected by OPN. Taken together, OPN can contribute to the impairment of innate host defense by interfering with the function of antimicrobial proteins, thus increasing the vulnerability to acquire infections during COPD.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26731746</pmid><doi>10.1371/journal.pone.0146192</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-01, Vol.11 (1), p.e0146192-e0146192 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1753448690 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Antibacterial activity Antibiotics Antimicrobial agents Bacteria Bacterial infections Bacterial Infections - complications Bacterial Infections - metabolism beta-Defensins - metabolism Binding Biocompatibility Biomedical materials Care and treatment Chemokines Chronic obstructive lung disease Chronic obstructive pulmonary disease Clinical Medicine Complications and side effects Cystic fibrosis Cytokines Cytokines - metabolism Elastase Glycoproteins Growth factors Haemophilus influenzae Health aspects Health risks Humans Immunoglobulins Infections Infectious diseases Inflammation Klinisk medicin Lactoferrin Lactoferrin - metabolism Leukocytes Lung - metabolism Lung diseases Lungmedicin och allergi Lysozyme Medical and Health Sciences Medicin och hälsovetenskap Medicine Midkine Molecular biology Neutrophils Obstructive lung disease Osteopontin Osteopontin - metabolism Peptidase Protein Binding Proteins Pseudomonas aeruginosa Pulmonary Disease, Chronic Obstructive - complications Pulmonary Disease, Chronic Obstructive - metabolism Pulmonary Disease, Chronic Obstructive - microbiology R&D Research & development Respiratory Medicine and Allergy Respiratory tract Respiratory tract diseases Respiratory Tract Infections - complications Respiratory Tract Infections - metabolism Respiratory Tract Infections - microbiology Risk factors Secretory Leukocyte Peptidase Inhibitor - metabolism Shielding Streptococcus infections Streptococcus pneumoniae Streptococcus pneumoniae - isolation & purification Thymic stromal lymphopoietin Thymus Treatment Failure Up-Regulation |
title | Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteopontin%20That%20Is%20Elevated%20in%20the%20Airways%20during%20COPD%20Impairs%20the%20Antibacterial%20Activity%20of%20Common%20Innate%20Antibiotics&rft.jtitle=PloS%20one&rft.au=Gela,%20Anele&rft.date=2016-01-05&rft.volume=11&rft.issue=1&rft.spage=e0146192&rft.epage=e0146192&rft.pages=e0146192-e0146192&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0146192&rft_dat=%3Cgale_plos_%3EA439084948%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c761t-b68c2b4a5527a8c4463d2436114330d402cef5dec707be242921b12d456264083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753448690&rft_id=info:pmid/26731746&rft_galeid=A439084948&rfr_iscdi=true |