Loading…

Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes

Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-01, Vol.11 (1), p.e0145750-e0145750
Main Authors: Joseph, Leroy C, Barca, Emanuele, Subramanyam, Prakash, Komrowski, Michael, Pajvani, Utpal, Colecraft, Henry M, Hirano, Michio, Morrow, John P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03
cites cdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03
container_end_page e0145750
container_issue 1
container_start_page e0145750
container_title PloS one
container_volume 11
creator Joseph, Leroy C
Barca, Emanuele
Subramanyam, Prakash
Komrowski, Michael
Pajvani, Utpal
Colecraft, Henry M
Hirano, Michio
Morrow, John P
description Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.
doi_str_mv 10.1371/journal.pone.0145750
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1756066280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A439688012</galeid><doaj_id>oai_doaj_org_article_1d1939f83ede484994358463e75b5c89</doaj_id><sourcerecordid>A439688012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggsIaHtosVJbCe5mVQVxiqNdaKAuLNc-6T1lMTFdqr1DXhsHJpNDdoF8kUcn-_8Pv7tE0WvYzyO0yz-cGta24hqvDENjHFMaEbxk-g4LtJkxBKcPj2YH0UvnLvFmKY5Y8-jo4RllBHGjqPfs2atl9pr0yBTouvJzcdLNL_TSjhACTq9nv9MztCNhS003u0jXm8BLbwF55BoFPqivZFr0yirRYUmy8bYWlRBExyaitaBQssdWgjfWuHDz4XwSDchZJU29c7InQf3MnpWisrBq_57En2_-PRtejm6mn-eTSdXI8mKxI9YJkmS47jICRMkB0plXjAlKGZAYliWIBTNypSqRNCSqiwpcqmIVEVeFkzg9CR6u9fdVMbx3kTH42AIZixIB2K2J5QRt3xjdS3sjhuh-d8FY1dcWK9lBTxWweKizFNQQHJSFCSlobAUMrrsCgta5_1u7bIGJYOJVlQD0WGk0Wu-MltOshjThAaB017Aml8tOM9r7SRUlWjAtF3dDOeU0CQN6Lt_0MdP11MrEQ6gm9KEfWUnyickLVgezE0CNX6ECkNBrWV4caUO64OEs0FCYDzc-VW4fsdni6__z85_DNn3B-waROXXzlRt92DdECR7UFrjnIXyweQY865h7t3gXcPwvmFC2pvDC3pIuu-Q9A-53Q-h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756066280</pqid></control><display><type>article</type><title>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Joseph, Leroy C ; Barca, Emanuele ; Subramanyam, Prakash ; Komrowski, Michael ; Pajvani, Utpal ; Colecraft, Henry M ; Hirano, Michio ; Morrow, John P</creator><contributor>Essop, M.Faadiel</contributor><creatorcontrib>Joseph, Leroy C ; Barca, Emanuele ; Subramanyam, Prakash ; Komrowski, Michael ; Pajvani, Utpal ; Colecraft, Henry M ; Hirano, Michio ; Morrow, John P ; Essop, M.Faadiel</creatorcontrib><description>Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0145750</identifier><identifier>PMID: 26756466</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Animals ; Antimycin A - chemistry ; Antioxidants ; Antioxidants - chemistry ; Apoptosis ; Arrhythmia ; Biophysics ; Calcium ; Calcium (mitochondrial) ; Calcium (reticular) ; Calcium - metabolism ; Calcium homeostasis ; Cardiac arrhythmia ; Cardiac muscle ; Cardiomyocytes ; Cardiovascular diseases ; Cell Line ; Clinical trials ; Clonal deletion ; Coronary artery disease ; CYBB protein ; Depolarization ; Diabetes ; Diabetes mellitus ; Electron Transport ; Epidemiology ; Fatty acids ; Gene Deletion ; Health aspects ; Heart ; Heart cells ; Heart diseases ; Heart failure ; Heart Ventricles - pathology ; Homeostasis ; Inhibition ; Laboratory animals ; Leak channels ; Male ; Medicine ; Membrane Glycoproteins - antagonists &amp; inhibitors ; Membrane Glycoproteins - genetics ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Molecular modelling ; Muscle Cells - cytology ; Myocytes ; Myocytes, Cardiac - cytology ; NAD(P)H oxidase ; NADPH Oxidase 2 ; NADPH Oxidases - antagonists &amp; inhibitors ; NADPH Oxidases - genetics ; Obesity ; Oxidases ; Oxidative stress ; Oxidative Stress - drug effects ; Oxygen ; Oxygen Consumption ; Palmitates - adverse effects ; Palmitates - chemistry ; Palmitic acid ; Physicians ; Physiological aspects ; Physiology ; Prevention ; Protein kinase C ; Protein Kinase C - chemistry ; Reactive oxygen species ; Reactive Oxygen Species - chemistry ; Rodents ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - metabolism ; Saturated fatty acids ; Signal Transduction ; Studies ; Surgeons ; Ventricle</subject><ispartof>PloS one, 2016-01, Vol.11 (1), p.e0145750-e0145750</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Joseph et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Joseph et al 2016 Joseph et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</citedby><cites>FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1756066280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1756066280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26756466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Essop, M.Faadiel</contributor><creatorcontrib>Joseph, Leroy C</creatorcontrib><creatorcontrib>Barca, Emanuele</creatorcontrib><creatorcontrib>Subramanyam, Prakash</creatorcontrib><creatorcontrib>Komrowski, Michael</creatorcontrib><creatorcontrib>Pajvani, Utpal</creatorcontrib><creatorcontrib>Colecraft, Henry M</creatorcontrib><creatorcontrib>Hirano, Michio</creatorcontrib><creatorcontrib>Morrow, John P</creatorcontrib><title>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.</description><subject>Abnormalities</subject><subject>Animals</subject><subject>Antimycin A - chemistry</subject><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Apoptosis</subject><subject>Arrhythmia</subject><subject>Biophysics</subject><subject>Calcium</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium (reticular)</subject><subject>Calcium - metabolism</subject><subject>Calcium homeostasis</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac muscle</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Cell Line</subject><subject>Clinical trials</subject><subject>Clonal deletion</subject><subject>Coronary artery disease</subject><subject>CYBB protein</subject><subject>Depolarization</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Electron Transport</subject><subject>Epidemiology</subject><subject>Fatty acids</subject><subject>Gene Deletion</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart cells</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart Ventricles - pathology</subject><subject>Homeostasis</subject><subject>Inhibition</subject><subject>Laboratory animals</subject><subject>Leak channels</subject><subject>Male</subject><subject>Medicine</subject><subject>Membrane Glycoproteins - antagonists &amp; inhibitors</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Molecular modelling</subject><subject>Muscle Cells - cytology</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - cytology</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - antagonists &amp; inhibitors</subject><subject>NADPH Oxidases - genetics</subject><subject>Obesity</subject><subject>Oxidases</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Palmitates - adverse effects</subject><subject>Palmitates - chemistry</subject><subject>Palmitic acid</subject><subject>Physicians</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Prevention</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - chemistry</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Rodents</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Saturated fatty acids</subject><subject>Signal Transduction</subject><subject>Studies</subject><subject>Surgeons</subject><subject>Ventricle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggsIaHtosVJbCe5mVQVxiqNdaKAuLNc-6T1lMTFdqr1DXhsHJpNDdoF8kUcn-_8Pv7tE0WvYzyO0yz-cGta24hqvDENjHFMaEbxk-g4LtJkxBKcPj2YH0UvnLvFmKY5Y8-jo4RllBHGjqPfs2atl9pr0yBTouvJzcdLNL_TSjhACTq9nv9MztCNhS003u0jXm8BLbwF55BoFPqivZFr0yirRYUmy8bYWlRBExyaitaBQssdWgjfWuHDz4XwSDchZJU29c7InQf3MnpWisrBq_57En2_-PRtejm6mn-eTSdXI8mKxI9YJkmS47jICRMkB0plXjAlKGZAYliWIBTNypSqRNCSqiwpcqmIVEVeFkzg9CR6u9fdVMbx3kTH42AIZixIB2K2J5QRt3xjdS3sjhuh-d8FY1dcWK9lBTxWweKizFNQQHJSFCSlobAUMrrsCgta5_1u7bIGJYOJVlQD0WGk0Wu-MltOshjThAaB017Aml8tOM9r7SRUlWjAtF3dDOeU0CQN6Lt_0MdP11MrEQ6gm9KEfWUnyickLVgezE0CNX6ECkNBrWV4caUO64OEs0FCYDzc-VW4fsdni6__z85_DNn3B-waROXXzlRt92DdECR7UFrjnIXyweQY865h7t3gXcPwvmFC2pvDC3pIuu-Q9A-53Q-h</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>Joseph, Leroy C</creator><creator>Barca, Emanuele</creator><creator>Subramanyam, Prakash</creator><creator>Komrowski, Michael</creator><creator>Pajvani, Utpal</creator><creator>Colecraft, Henry M</creator><creator>Hirano, Michio</creator><creator>Morrow, John P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160112</creationdate><title>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</title><author>Joseph, Leroy C ; Barca, Emanuele ; Subramanyam, Prakash ; Komrowski, Michael ; Pajvani, Utpal ; Colecraft, Henry M ; Hirano, Michio ; Morrow, John P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abnormalities</topic><topic>Animals</topic><topic>Antimycin A - chemistry</topic><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Apoptosis</topic><topic>Arrhythmia</topic><topic>Biophysics</topic><topic>Calcium</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium (reticular)</topic><topic>Calcium - metabolism</topic><topic>Calcium homeostasis</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac muscle</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Cell Line</topic><topic>Clinical trials</topic><topic>Clonal deletion</topic><topic>Coronary artery disease</topic><topic>CYBB protein</topic><topic>Depolarization</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Electron Transport</topic><topic>Epidemiology</topic><topic>Fatty acids</topic><topic>Gene Deletion</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart cells</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart Ventricles - pathology</topic><topic>Homeostasis</topic><topic>Inhibition</topic><topic>Laboratory animals</topic><topic>Leak channels</topic><topic>Male</topic><topic>Medicine</topic><topic>Membrane Glycoproteins - antagonists &amp; inhibitors</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Molecular modelling</topic><topic>Muscle Cells - cytology</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - cytology</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - antagonists &amp; inhibitors</topic><topic>NADPH Oxidases - genetics</topic><topic>Obesity</topic><topic>Oxidases</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Palmitates - adverse effects</topic><topic>Palmitates - chemistry</topic><topic>Palmitic acid</topic><topic>Physicians</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Prevention</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - chemistry</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Rodents</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Saturated fatty acids</topic><topic>Signal Transduction</topic><topic>Studies</topic><topic>Surgeons</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, Leroy C</creatorcontrib><creatorcontrib>Barca, Emanuele</creatorcontrib><creatorcontrib>Subramanyam, Prakash</creatorcontrib><creatorcontrib>Komrowski, Michael</creatorcontrib><creatorcontrib>Pajvani, Utpal</creatorcontrib><creatorcontrib>Colecraft, Henry M</creatorcontrib><creatorcontrib>Hirano, Michio</creatorcontrib><creatorcontrib>Morrow, John P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, Leroy C</au><au>Barca, Emanuele</au><au>Subramanyam, Prakash</au><au>Komrowski, Michael</au><au>Pajvani, Utpal</au><au>Colecraft, Henry M</au><au>Hirano, Michio</au><au>Morrow, John P</au><au>Essop, M.Faadiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-01-12</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>e0145750</spage><epage>e0145750</epage><pages>e0145750-e0145750</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26756466</pmid><doi>10.1371/journal.pone.0145750</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-01, Vol.11 (1), p.e0145750-e0145750
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1756066280
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Abnormalities
Animals
Antimycin A - chemistry
Antioxidants
Antioxidants - chemistry
Apoptosis
Arrhythmia
Biophysics
Calcium
Calcium (mitochondrial)
Calcium (reticular)
Calcium - metabolism
Calcium homeostasis
Cardiac arrhythmia
Cardiac muscle
Cardiomyocytes
Cardiovascular diseases
Cell Line
Clinical trials
Clonal deletion
Coronary artery disease
CYBB protein
Depolarization
Diabetes
Diabetes mellitus
Electron Transport
Epidemiology
Fatty acids
Gene Deletion
Health aspects
Heart
Heart cells
Heart diseases
Heart failure
Heart Ventricles - pathology
Homeostasis
Inhibition
Laboratory animals
Leak channels
Male
Medicine
Membrane Glycoproteins - antagonists & inhibitors
Membrane Glycoproteins - genetics
Metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria
Mitochondria - metabolism
Mitochondria - pathology
Molecular modelling
Muscle Cells - cytology
Myocytes
Myocytes, Cardiac - cytology
NAD(P)H oxidase
NADPH Oxidase 2
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - genetics
Obesity
Oxidases
Oxidative stress
Oxidative Stress - drug effects
Oxygen
Oxygen Consumption
Palmitates - adverse effects
Palmitates - chemistry
Palmitic acid
Physicians
Physiological aspects
Physiology
Prevention
Protein kinase C
Protein Kinase C - chemistry
Reactive oxygen species
Reactive Oxygen Species - chemistry
Rodents
Sarcoplasmic reticulum
Sarcoplasmic Reticulum - metabolism
Saturated fatty acids
Signal Transduction
Studies
Surgeons
Ventricle
title Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20NAPDH%20Oxidase%202%20(NOX2)%20Prevents%20Oxidative%20Stress%20and%20Mitochondrial%20Abnormalities%20Caused%20by%20Saturated%20Fat%20in%20Cardiomyocytes&rft.jtitle=PloS%20one&rft.au=Joseph,%20Leroy%20C&rft.date=2016-01-12&rft.volume=11&rft.issue=1&rft.spage=e0145750&rft.epage=e0145750&rft.pages=e0145750-e0145750&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0145750&rft_dat=%3Cgale_plos_%3EA439688012%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1756066280&rft_id=info:pmid/26756466&rft_galeid=A439688012&rfr_iscdi=true