Loading…
Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes
Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of...
Saved in:
Published in: | PloS one 2016-01, Vol.11 (1), p.e0145750-e0145750 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03 |
container_end_page | e0145750 |
container_issue | 1 |
container_start_page | e0145750 |
container_title | PloS one |
container_volume | 11 |
creator | Joseph, Leroy C Barca, Emanuele Subramanyam, Prakash Komrowski, Michael Pajvani, Utpal Colecraft, Henry M Hirano, Michio Morrow, John P |
description | Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity. |
doi_str_mv | 10.1371/journal.pone.0145750 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1756066280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A439688012</galeid><doaj_id>oai_doaj_org_article_1d1939f83ede484994358463e75b5c89</doaj_id><sourcerecordid>A439688012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggsIaHtosVJbCe5mVQVxiqNdaKAuLNc-6T1lMTFdqr1DXhsHJpNDdoF8kUcn-_8Pv7tE0WvYzyO0yz-cGta24hqvDENjHFMaEbxk-g4LtJkxBKcPj2YH0UvnLvFmKY5Y8-jo4RllBHGjqPfs2atl9pr0yBTouvJzcdLNL_TSjhACTq9nv9MztCNhS003u0jXm8BLbwF55BoFPqivZFr0yirRYUmy8bYWlRBExyaitaBQssdWgjfWuHDz4XwSDchZJU29c7InQf3MnpWisrBq_57En2_-PRtejm6mn-eTSdXI8mKxI9YJkmS47jICRMkB0plXjAlKGZAYliWIBTNypSqRNCSqiwpcqmIVEVeFkzg9CR6u9fdVMbx3kTH42AIZixIB2K2J5QRt3xjdS3sjhuh-d8FY1dcWK9lBTxWweKizFNQQHJSFCSlobAUMrrsCgta5_1u7bIGJYOJVlQD0WGk0Wu-MltOshjThAaB017Aml8tOM9r7SRUlWjAtF3dDOeU0CQN6Lt_0MdP11MrEQ6gm9KEfWUnyickLVgezE0CNX6ECkNBrWV4caUO64OEs0FCYDzc-VW4fsdni6__z85_DNn3B-waROXXzlRt92DdECR7UFrjnIXyweQY865h7t3gXcPwvmFC2pvDC3pIuu-Q9A-53Q-h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756066280</pqid></control><display><type>article</type><title>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Joseph, Leroy C ; Barca, Emanuele ; Subramanyam, Prakash ; Komrowski, Michael ; Pajvani, Utpal ; Colecraft, Henry M ; Hirano, Michio ; Morrow, John P</creator><contributor>Essop, M.Faadiel</contributor><creatorcontrib>Joseph, Leroy C ; Barca, Emanuele ; Subramanyam, Prakash ; Komrowski, Michael ; Pajvani, Utpal ; Colecraft, Henry M ; Hirano, Michio ; Morrow, John P ; Essop, M.Faadiel</creatorcontrib><description>Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0145750</identifier><identifier>PMID: 26756466</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Animals ; Antimycin A - chemistry ; Antioxidants ; Antioxidants - chemistry ; Apoptosis ; Arrhythmia ; Biophysics ; Calcium ; Calcium (mitochondrial) ; Calcium (reticular) ; Calcium - metabolism ; Calcium homeostasis ; Cardiac arrhythmia ; Cardiac muscle ; Cardiomyocytes ; Cardiovascular diseases ; Cell Line ; Clinical trials ; Clonal deletion ; Coronary artery disease ; CYBB protein ; Depolarization ; Diabetes ; Diabetes mellitus ; Electron Transport ; Epidemiology ; Fatty acids ; Gene Deletion ; Health aspects ; Heart ; Heart cells ; Heart diseases ; Heart failure ; Heart Ventricles - pathology ; Homeostasis ; Inhibition ; Laboratory animals ; Leak channels ; Male ; Medicine ; Membrane Glycoproteins - antagonists & inhibitors ; Membrane Glycoproteins - genetics ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Molecular modelling ; Muscle Cells - cytology ; Myocytes ; Myocytes, Cardiac - cytology ; NAD(P)H oxidase ; NADPH Oxidase 2 ; NADPH Oxidases - antagonists & inhibitors ; NADPH Oxidases - genetics ; Obesity ; Oxidases ; Oxidative stress ; Oxidative Stress - drug effects ; Oxygen ; Oxygen Consumption ; Palmitates - adverse effects ; Palmitates - chemistry ; Palmitic acid ; Physicians ; Physiological aspects ; Physiology ; Prevention ; Protein kinase C ; Protein Kinase C - chemistry ; Reactive oxygen species ; Reactive Oxygen Species - chemistry ; Rodents ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - metabolism ; Saturated fatty acids ; Signal Transduction ; Studies ; Surgeons ; Ventricle</subject><ispartof>PloS one, 2016-01, Vol.11 (1), p.e0145750-e0145750</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Joseph et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Joseph et al 2016 Joseph et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</citedby><cites>FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1756066280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1756066280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26756466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Essop, M.Faadiel</contributor><creatorcontrib>Joseph, Leroy C</creatorcontrib><creatorcontrib>Barca, Emanuele</creatorcontrib><creatorcontrib>Subramanyam, Prakash</creatorcontrib><creatorcontrib>Komrowski, Michael</creatorcontrib><creatorcontrib>Pajvani, Utpal</creatorcontrib><creatorcontrib>Colecraft, Henry M</creatorcontrib><creatorcontrib>Hirano, Michio</creatorcontrib><creatorcontrib>Morrow, John P</creatorcontrib><title>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.</description><subject>Abnormalities</subject><subject>Animals</subject><subject>Antimycin A - chemistry</subject><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Apoptosis</subject><subject>Arrhythmia</subject><subject>Biophysics</subject><subject>Calcium</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium (reticular)</subject><subject>Calcium - metabolism</subject><subject>Calcium homeostasis</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac muscle</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Cell Line</subject><subject>Clinical trials</subject><subject>Clonal deletion</subject><subject>Coronary artery disease</subject><subject>CYBB protein</subject><subject>Depolarization</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Electron Transport</subject><subject>Epidemiology</subject><subject>Fatty acids</subject><subject>Gene Deletion</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart cells</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart Ventricles - pathology</subject><subject>Homeostasis</subject><subject>Inhibition</subject><subject>Laboratory animals</subject><subject>Leak channels</subject><subject>Male</subject><subject>Medicine</subject><subject>Membrane Glycoproteins - antagonists & inhibitors</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Molecular modelling</subject><subject>Muscle Cells - cytology</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - cytology</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - antagonists & inhibitors</subject><subject>NADPH Oxidases - genetics</subject><subject>Obesity</subject><subject>Oxidases</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Palmitates - adverse effects</subject><subject>Palmitates - chemistry</subject><subject>Palmitic acid</subject><subject>Physicians</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Prevention</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - chemistry</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Rodents</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Saturated fatty acids</subject><subject>Signal Transduction</subject><subject>Studies</subject><subject>Surgeons</subject><subject>Ventricle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggsIaHtosVJbCe5mVQVxiqNdaKAuLNc-6T1lMTFdqr1DXhsHJpNDdoF8kUcn-_8Pv7tE0WvYzyO0yz-cGta24hqvDENjHFMaEbxk-g4LtJkxBKcPj2YH0UvnLvFmKY5Y8-jo4RllBHGjqPfs2atl9pr0yBTouvJzcdLNL_TSjhACTq9nv9MztCNhS003u0jXm8BLbwF55BoFPqivZFr0yirRYUmy8bYWlRBExyaitaBQssdWgjfWuHDz4XwSDchZJU29c7InQf3MnpWisrBq_57En2_-PRtejm6mn-eTSdXI8mKxI9YJkmS47jICRMkB0plXjAlKGZAYliWIBTNypSqRNCSqiwpcqmIVEVeFkzg9CR6u9fdVMbx3kTH42AIZixIB2K2J5QRt3xjdS3sjhuh-d8FY1dcWK9lBTxWweKizFNQQHJSFCSlobAUMrrsCgta5_1u7bIGJYOJVlQD0WGk0Wu-MltOshjThAaB017Aml8tOM9r7SRUlWjAtF3dDOeU0CQN6Lt_0MdP11MrEQ6gm9KEfWUnyickLVgezE0CNX6ECkNBrWV4caUO64OEs0FCYDzc-VW4fsdni6__z85_DNn3B-waROXXzlRt92DdECR7UFrjnIXyweQY865h7t3gXcPwvmFC2pvDC3pIuu-Q9A-53Q-h</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>Joseph, Leroy C</creator><creator>Barca, Emanuele</creator><creator>Subramanyam, Prakash</creator><creator>Komrowski, Michael</creator><creator>Pajvani, Utpal</creator><creator>Colecraft, Henry M</creator><creator>Hirano, Michio</creator><creator>Morrow, John P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160112</creationdate><title>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</title><author>Joseph, Leroy C ; Barca, Emanuele ; Subramanyam, Prakash ; Komrowski, Michael ; Pajvani, Utpal ; Colecraft, Henry M ; Hirano, Michio ; Morrow, John P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abnormalities</topic><topic>Animals</topic><topic>Antimycin A - chemistry</topic><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Apoptosis</topic><topic>Arrhythmia</topic><topic>Biophysics</topic><topic>Calcium</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium (reticular)</topic><topic>Calcium - metabolism</topic><topic>Calcium homeostasis</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac muscle</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Cell Line</topic><topic>Clinical trials</topic><topic>Clonal deletion</topic><topic>Coronary artery disease</topic><topic>CYBB protein</topic><topic>Depolarization</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Electron Transport</topic><topic>Epidemiology</topic><topic>Fatty acids</topic><topic>Gene Deletion</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart cells</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart Ventricles - pathology</topic><topic>Homeostasis</topic><topic>Inhibition</topic><topic>Laboratory animals</topic><topic>Leak channels</topic><topic>Male</topic><topic>Medicine</topic><topic>Membrane Glycoproteins - antagonists & inhibitors</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Molecular modelling</topic><topic>Muscle Cells - cytology</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - cytology</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - antagonists & inhibitors</topic><topic>NADPH Oxidases - genetics</topic><topic>Obesity</topic><topic>Oxidases</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Palmitates - adverse effects</topic><topic>Palmitates - chemistry</topic><topic>Palmitic acid</topic><topic>Physicians</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Prevention</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - chemistry</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Rodents</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Saturated fatty acids</topic><topic>Signal Transduction</topic><topic>Studies</topic><topic>Surgeons</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, Leroy C</creatorcontrib><creatorcontrib>Barca, Emanuele</creatorcontrib><creatorcontrib>Subramanyam, Prakash</creatorcontrib><creatorcontrib>Komrowski, Michael</creatorcontrib><creatorcontrib>Pajvani, Utpal</creatorcontrib><creatorcontrib>Colecraft, Henry M</creatorcontrib><creatorcontrib>Hirano, Michio</creatorcontrib><creatorcontrib>Morrow, John P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, Leroy C</au><au>Barca, Emanuele</au><au>Subramanyam, Prakash</au><au>Komrowski, Michael</au><au>Pajvani, Utpal</au><au>Colecraft, Henry M</au><au>Hirano, Michio</au><au>Morrow, John P</au><au>Essop, M.Faadiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-01-12</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>e0145750</spage><epage>e0145750</epage><pages>e0145750-e0145750</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26756466</pmid><doi>10.1371/journal.pone.0145750</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-01, Vol.11 (1), p.e0145750-e0145750 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1756066280 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Abnormalities Animals Antimycin A - chemistry Antioxidants Antioxidants - chemistry Apoptosis Arrhythmia Biophysics Calcium Calcium (mitochondrial) Calcium (reticular) Calcium - metabolism Calcium homeostasis Cardiac arrhythmia Cardiac muscle Cardiomyocytes Cardiovascular diseases Cell Line Clinical trials Clonal deletion Coronary artery disease CYBB protein Depolarization Diabetes Diabetes mellitus Electron Transport Epidemiology Fatty acids Gene Deletion Health aspects Heart Heart cells Heart diseases Heart failure Heart Ventricles - pathology Homeostasis Inhibition Laboratory animals Leak channels Male Medicine Membrane Glycoproteins - antagonists & inhibitors Membrane Glycoproteins - genetics Metabolism Mice Mice, Inbred C57BL Mice, Knockout Mitochondria Mitochondria - metabolism Mitochondria - pathology Molecular modelling Muscle Cells - cytology Myocytes Myocytes, Cardiac - cytology NAD(P)H oxidase NADPH Oxidase 2 NADPH Oxidases - antagonists & inhibitors NADPH Oxidases - genetics Obesity Oxidases Oxidative stress Oxidative Stress - drug effects Oxygen Oxygen Consumption Palmitates - adverse effects Palmitates - chemistry Palmitic acid Physicians Physiological aspects Physiology Prevention Protein kinase C Protein Kinase C - chemistry Reactive oxygen species Reactive Oxygen Species - chemistry Rodents Sarcoplasmic reticulum Sarcoplasmic Reticulum - metabolism Saturated fatty acids Signal Transduction Studies Surgeons Ventricle |
title | Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20NAPDH%20Oxidase%202%20(NOX2)%20Prevents%20Oxidative%20Stress%20and%20Mitochondrial%20Abnormalities%20Caused%20by%20Saturated%20Fat%20in%20Cardiomyocytes&rft.jtitle=PloS%20one&rft.au=Joseph,%20Leroy%20C&rft.date=2016-01-12&rft.volume=11&rft.issue=1&rft.spage=e0145750&rft.epage=e0145750&rft.pages=e0145750-e0145750&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0145750&rft_dat=%3Cgale_plos_%3EA439688012%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-67c428019846a48e55c896da506e41ebfead57f35d2a5f5d7298cd4cd98f96a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1756066280&rft_id=info:pmid/26756466&rft_galeid=A439688012&rfr_iscdi=true |