Loading…

Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons

The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discriminatio...

Full description

Saved in:
Bibliographic Details
Published in:PLoS biology 2015-12, Vol.13 (12), p.e1002308-e1002308
Main Authors: Aizenberg, Mark, Mwilambwe-Tshilobo, Laetitia, Briguglio, John J, Natan, Ryan G, Geffen, Maria N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3
cites cdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3
container_end_page e1002308
container_issue 12
container_start_page e1002308
container_title PLoS biology
container_volume 13
creator Aizenberg, Mark
Mwilambwe-Tshilobo, Laetitia
Briguglio, John J
Natan, Ryan G
Geffen, Maria N
description The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.
doi_str_mv 10.1371/journal.pbio.1002308
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1764353896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453915817</galeid><doaj_id>oai_doaj_org_article_3bdef92b87d74d3bb11d81f24765c01e</doaj_id><sourcerecordid>A453915817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</originalsourceid><addsrcrecordid>eNqVk09vFCEYxidGY2v1GxidxIsedoWBAeZi0q5WN9m0Sa1eCTAvuzSzsMJM4x787jLutukmHjQc-Pd7H14eeIviJUZTTDh-fxOG6FU33WgXphihiiDxqDjGNa0nXIj68YPxUfEspZvMVE0lnhZHFWNVwyk7Ln6dudZFML0LWay8guXQqXFSBlvOvVc9lMq35QJU9NCWZ7BSty7EVF6vVJ_5bltm-DzCjwG82ZYfXTLRrZ3fqehtOQuxdyaLz_3KadeHuC0vYIjBp-fFE6u6BC_2_Unx7fzT9ezLZHH5eT47XUwMY7yfGKJqRpTVmGqNAHNsqtpwhVkDCCHKmsZibowCi4xlNWZAqLXK1kKLylhyUrze6W66kOTeuSQxZ5TURDQsE_Md0QZ1Izf5BipuZVBO_lkIcSnVeI0OJNEt2KbSgrectkRrjFuBbUU5qw3CkLU-7E8b9BpaA76PqjsQPdzxbiWX4VZSxgQSYzJv9wIxZFtTL9fZVeg65SEMY940oxVHOKNvduhS5dSctyErmhGXp7QmDa4F5pma_oXKrYW1M8GDdXn9IODdQUBmevjZL9WQkpx_vfoP9uLf2cvvhyzdsSaGlCLYewcxkmMJ3D2kHEtA7ksgh7166P590N2fJ78BpIoD8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744662701</pqid></control><display><type>article</type><title>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Aizenberg, Mark ; Mwilambwe-Tshilobo, Laetitia ; Briguglio, John J ; Natan, Ryan G ; Geffen, Maria N</creator><contributor>Froemke, Robert Crooks</contributor><creatorcontrib>Aizenberg, Mark ; Mwilambwe-Tshilobo, Laetitia ; Briguglio, John J ; Natan, Ryan G ; Geffen, Maria N ; Froemke, Robert Crooks</creatorcontrib><description>The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002308</identifier><identifier>PMID: 26629746</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acoustic Stimulation ; Animals ; Auditory cortex ; Auditory Cortex - physiology ; Auditory Cortex - radiation effects ; Auditory pathways ; Behavior ; Behavior, Animal - radiation effects ; Biological control systems ; Biomarkers - metabolism ; Conditioning, Classical ; Conditioning, Operant ; Discrimination ; Discrimination Learning - radiation effects ; Ears &amp; hearing ; Experiments ; Generalization, Response - radiation effects ; Instinct ; Interneurons - physiology ; Interneurons - radiation effects ; Light ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Neurological ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurological research ; Neurons ; Parvalbumins - genetics ; Parvalbumins - metabolism ; Physiological aspects ; Population ; Recombinant Fusion Proteins - metabolism ; Rodents</subject><ispartof>PLoS biology, 2015-12, Vol.13 (12), p.e1002308-e1002308</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Aizenberg et al 2015 Aizenberg et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Aizenberg M, Mwilambwe-Tshilobo L, Briguglio JJ, Natan RG, Geffen MN (2015) Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons. PLoS Biol 13(12): e1002308. doi:10.1371/journal.pbio.1002308</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</citedby><cites>FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668086/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668086/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26629746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Froemke, Robert Crooks</contributor><creatorcontrib>Aizenberg, Mark</creatorcontrib><creatorcontrib>Mwilambwe-Tshilobo, Laetitia</creatorcontrib><creatorcontrib>Briguglio, John J</creatorcontrib><creatorcontrib>Natan, Ryan G</creatorcontrib><creatorcontrib>Geffen, Maria N</creatorcontrib><title>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Auditory cortex</subject><subject>Auditory Cortex - physiology</subject><subject>Auditory Cortex - radiation effects</subject><subject>Auditory pathways</subject><subject>Behavior</subject><subject>Behavior, Animal - radiation effects</subject><subject>Biological control systems</subject><subject>Biomarkers - metabolism</subject><subject>Conditioning, Classical</subject><subject>Conditioning, Operant</subject><subject>Discrimination</subject><subject>Discrimination Learning - radiation effects</subject><subject>Ears &amp; hearing</subject><subject>Experiments</subject><subject>Generalization, Response - radiation effects</subject><subject>Instinct</subject><subject>Interneurons - physiology</subject><subject>Interneurons - radiation effects</subject><subject>Light</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurological research</subject><subject>Neurons</subject><subject>Parvalbumins - genetics</subject><subject>Parvalbumins - metabolism</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Rodents</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk09vFCEYxidGY2v1GxidxIsedoWBAeZi0q5WN9m0Sa1eCTAvuzSzsMJM4x787jLutukmHjQc-Pd7H14eeIviJUZTTDh-fxOG6FU33WgXphihiiDxqDjGNa0nXIj68YPxUfEspZvMVE0lnhZHFWNVwyk7Ln6dudZFML0LWay8guXQqXFSBlvOvVc9lMq35QJU9NCWZ7BSty7EVF6vVJ_5bltm-DzCjwG82ZYfXTLRrZ3fqehtOQuxdyaLz_3KadeHuC0vYIjBp-fFE6u6BC_2_Unx7fzT9ezLZHH5eT47XUwMY7yfGKJqRpTVmGqNAHNsqtpwhVkDCCHKmsZibowCi4xlNWZAqLXK1kKLylhyUrze6W66kOTeuSQxZ5TURDQsE_Md0QZ1Izf5BipuZVBO_lkIcSnVeI0OJNEt2KbSgrectkRrjFuBbUU5qw3CkLU-7E8b9BpaA76PqjsQPdzxbiWX4VZSxgQSYzJv9wIxZFtTL9fZVeg65SEMY940oxVHOKNvduhS5dSctyErmhGXp7QmDa4F5pma_oXKrYW1M8GDdXn9IODdQUBmevjZL9WQkpx_vfoP9uLf2cvvhyzdsSaGlCLYewcxkmMJ3D2kHEtA7ksgh7166P590N2fJ78BpIoD8w</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Aizenberg, Mark</creator><creator>Mwilambwe-Tshilobo, Laetitia</creator><creator>Briguglio, John J</creator><creator>Natan, Ryan G</creator><creator>Geffen, Maria N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20151201</creationdate><title>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</title><author>Aizenberg, Mark ; Mwilambwe-Tshilobo, Laetitia ; Briguglio, John J ; Natan, Ryan G ; Geffen, Maria N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Auditory cortex</topic><topic>Auditory Cortex - physiology</topic><topic>Auditory Cortex - radiation effects</topic><topic>Auditory pathways</topic><topic>Behavior</topic><topic>Behavior, Animal - radiation effects</topic><topic>Biological control systems</topic><topic>Biomarkers - metabolism</topic><topic>Conditioning, Classical</topic><topic>Conditioning, Operant</topic><topic>Discrimination</topic><topic>Discrimination Learning - radiation effects</topic><topic>Ears &amp; hearing</topic><topic>Experiments</topic><topic>Generalization, Response - radiation effects</topic><topic>Instinct</topic><topic>Interneurons - physiology</topic><topic>Interneurons - radiation effects</topic><topic>Light</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurological research</topic><topic>Neurons</topic><topic>Parvalbumins - genetics</topic><topic>Parvalbumins - metabolism</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aizenberg, Mark</creatorcontrib><creatorcontrib>Mwilambwe-Tshilobo, Laetitia</creatorcontrib><creatorcontrib>Briguglio, John J</creatorcontrib><creatorcontrib>Natan, Ryan G</creatorcontrib><creatorcontrib>Geffen, Maria N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aizenberg, Mark</au><au>Mwilambwe-Tshilobo, Laetitia</au><au>Briguglio, John J</au><au>Natan, Ryan G</au><au>Geffen, Maria N</au><au>Froemke, Robert Crooks</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>13</volume><issue>12</issue><spage>e1002308</spage><epage>e1002308</epage><pages>e1002308-e1002308</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26629746</pmid><doi>10.1371/journal.pbio.1002308</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2015-12, Vol.13 (12), p.e1002308-e1002308
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1764353896
source PubMed Central (Open Access); Publicly Available Content Database
subjects Acoustic Stimulation
Animals
Auditory cortex
Auditory Cortex - physiology
Auditory Cortex - radiation effects
Auditory pathways
Behavior
Behavior, Animal - radiation effects
Biological control systems
Biomarkers - metabolism
Conditioning, Classical
Conditioning, Operant
Discrimination
Discrimination Learning - radiation effects
Ears & hearing
Experiments
Generalization, Response - radiation effects
Instinct
Interneurons - physiology
Interneurons - radiation effects
Light
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Models, Neurological
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurological research
Neurons
Parvalbumins - genetics
Parvalbumins - metabolism
Physiological aspects
Population
Recombinant Fusion Proteins - metabolism
Rodents
title Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20Regulation%20of%20Innate%20and%20Learned%20Behaviors%20That%20Rely%20on%20Frequency%20Discrimination%20by%20Cortical%20Inhibitory%20Neurons&rft.jtitle=PLoS%20biology&rft.au=Aizenberg,%20Mark&rft.date=2015-12-01&rft.volume=13&rft.issue=12&rft.spage=e1002308&rft.epage=e1002308&rft.pages=e1002308-e1002308&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002308&rft_dat=%3Cgale_plos_%3EA453915817%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744662701&rft_id=info:pmid/26629746&rft_galeid=A453915817&rfr_iscdi=true