Loading…
Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons
The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discriminatio...
Saved in:
Published in: | PLoS biology 2015-12, Vol.13 (12), p.e1002308-e1002308 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3 |
container_end_page | e1002308 |
container_issue | 12 |
container_start_page | e1002308 |
container_title | PLoS biology |
container_volume | 13 |
creator | Aizenberg, Mark Mwilambwe-Tshilobo, Laetitia Briguglio, John J Natan, Ryan G Geffen, Maria N |
description | The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination. |
doi_str_mv | 10.1371/journal.pbio.1002308 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1764353896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453915817</galeid><doaj_id>oai_doaj_org_article_3bdef92b87d74d3bb11d81f24765c01e</doaj_id><sourcerecordid>A453915817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</originalsourceid><addsrcrecordid>eNqVk09vFCEYxidGY2v1GxidxIsedoWBAeZi0q5WN9m0Sa1eCTAvuzSzsMJM4x787jLutukmHjQc-Pd7H14eeIviJUZTTDh-fxOG6FU33WgXphihiiDxqDjGNa0nXIj68YPxUfEspZvMVE0lnhZHFWNVwyk7Ln6dudZFML0LWay8guXQqXFSBlvOvVc9lMq35QJU9NCWZ7BSty7EVF6vVJ_5bltm-DzCjwG82ZYfXTLRrZ3fqehtOQuxdyaLz_3KadeHuC0vYIjBp-fFE6u6BC_2_Unx7fzT9ezLZHH5eT47XUwMY7yfGKJqRpTVmGqNAHNsqtpwhVkDCCHKmsZibowCi4xlNWZAqLXK1kKLylhyUrze6W66kOTeuSQxZ5TURDQsE_Md0QZ1Izf5BipuZVBO_lkIcSnVeI0OJNEt2KbSgrectkRrjFuBbUU5qw3CkLU-7E8b9BpaA76PqjsQPdzxbiWX4VZSxgQSYzJv9wIxZFtTL9fZVeg65SEMY940oxVHOKNvduhS5dSctyErmhGXp7QmDa4F5pma_oXKrYW1M8GDdXn9IODdQUBmevjZL9WQkpx_vfoP9uLf2cvvhyzdsSaGlCLYewcxkmMJ3D2kHEtA7ksgh7166P590N2fJ78BpIoD8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744662701</pqid></control><display><type>article</type><title>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Aizenberg, Mark ; Mwilambwe-Tshilobo, Laetitia ; Briguglio, John J ; Natan, Ryan G ; Geffen, Maria N</creator><contributor>Froemke, Robert Crooks</contributor><creatorcontrib>Aizenberg, Mark ; Mwilambwe-Tshilobo, Laetitia ; Briguglio, John J ; Natan, Ryan G ; Geffen, Maria N ; Froemke, Robert Crooks</creatorcontrib><description>The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002308</identifier><identifier>PMID: 26629746</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acoustic Stimulation ; Animals ; Auditory cortex ; Auditory Cortex - physiology ; Auditory Cortex - radiation effects ; Auditory pathways ; Behavior ; Behavior, Animal - radiation effects ; Biological control systems ; Biomarkers - metabolism ; Conditioning, Classical ; Conditioning, Operant ; Discrimination ; Discrimination Learning - radiation effects ; Ears & hearing ; Experiments ; Generalization, Response - radiation effects ; Instinct ; Interneurons - physiology ; Interneurons - radiation effects ; Light ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Neurological ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurological research ; Neurons ; Parvalbumins - genetics ; Parvalbumins - metabolism ; Physiological aspects ; Population ; Recombinant Fusion Proteins - metabolism ; Rodents</subject><ispartof>PLoS biology, 2015-12, Vol.13 (12), p.e1002308-e1002308</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Aizenberg et al 2015 Aizenberg et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Aizenberg M, Mwilambwe-Tshilobo L, Briguglio JJ, Natan RG, Geffen MN (2015) Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons. PLoS Biol 13(12): e1002308. doi:10.1371/journal.pbio.1002308</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</citedby><cites>FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668086/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668086/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26629746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Froemke, Robert Crooks</contributor><creatorcontrib>Aizenberg, Mark</creatorcontrib><creatorcontrib>Mwilambwe-Tshilobo, Laetitia</creatorcontrib><creatorcontrib>Briguglio, John J</creatorcontrib><creatorcontrib>Natan, Ryan G</creatorcontrib><creatorcontrib>Geffen, Maria N</creatorcontrib><title>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Auditory cortex</subject><subject>Auditory Cortex - physiology</subject><subject>Auditory Cortex - radiation effects</subject><subject>Auditory pathways</subject><subject>Behavior</subject><subject>Behavior, Animal - radiation effects</subject><subject>Biological control systems</subject><subject>Biomarkers - metabolism</subject><subject>Conditioning, Classical</subject><subject>Conditioning, Operant</subject><subject>Discrimination</subject><subject>Discrimination Learning - radiation effects</subject><subject>Ears & hearing</subject><subject>Experiments</subject><subject>Generalization, Response - radiation effects</subject><subject>Instinct</subject><subject>Interneurons - physiology</subject><subject>Interneurons - radiation effects</subject><subject>Light</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurological research</subject><subject>Neurons</subject><subject>Parvalbumins - genetics</subject><subject>Parvalbumins - metabolism</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Rodents</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk09vFCEYxidGY2v1GxidxIsedoWBAeZi0q5WN9m0Sa1eCTAvuzSzsMJM4x787jLutukmHjQc-Pd7H14eeIviJUZTTDh-fxOG6FU33WgXphihiiDxqDjGNa0nXIj68YPxUfEspZvMVE0lnhZHFWNVwyk7Ln6dudZFML0LWay8guXQqXFSBlvOvVc9lMq35QJU9NCWZ7BSty7EVF6vVJ_5bltm-DzCjwG82ZYfXTLRrZ3fqehtOQuxdyaLz_3KadeHuC0vYIjBp-fFE6u6BC_2_Unx7fzT9ezLZHH5eT47XUwMY7yfGKJqRpTVmGqNAHNsqtpwhVkDCCHKmsZibowCi4xlNWZAqLXK1kKLylhyUrze6W66kOTeuSQxZ5TURDQsE_Md0QZ1Izf5BipuZVBO_lkIcSnVeI0OJNEt2KbSgrectkRrjFuBbUU5qw3CkLU-7E8b9BpaA76PqjsQPdzxbiWX4VZSxgQSYzJv9wIxZFtTL9fZVeg65SEMY940oxVHOKNvduhS5dSctyErmhGXp7QmDa4F5pma_oXKrYW1M8GDdXn9IODdQUBmevjZL9WQkpx_vfoP9uLf2cvvhyzdsSaGlCLYewcxkmMJ3D2kHEtA7ksgh7166P590N2fJ78BpIoD8w</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Aizenberg, Mark</creator><creator>Mwilambwe-Tshilobo, Laetitia</creator><creator>Briguglio, John J</creator><creator>Natan, Ryan G</creator><creator>Geffen, Maria N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20151201</creationdate><title>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</title><author>Aizenberg, Mark ; Mwilambwe-Tshilobo, Laetitia ; Briguglio, John J ; Natan, Ryan G ; Geffen, Maria N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Auditory cortex</topic><topic>Auditory Cortex - physiology</topic><topic>Auditory Cortex - radiation effects</topic><topic>Auditory pathways</topic><topic>Behavior</topic><topic>Behavior, Animal - radiation effects</topic><topic>Biological control systems</topic><topic>Biomarkers - metabolism</topic><topic>Conditioning, Classical</topic><topic>Conditioning, Operant</topic><topic>Discrimination</topic><topic>Discrimination Learning - radiation effects</topic><topic>Ears & hearing</topic><topic>Experiments</topic><topic>Generalization, Response - radiation effects</topic><topic>Instinct</topic><topic>Interneurons - physiology</topic><topic>Interneurons - radiation effects</topic><topic>Light</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurological research</topic><topic>Neurons</topic><topic>Parvalbumins - genetics</topic><topic>Parvalbumins - metabolism</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aizenberg, Mark</creatorcontrib><creatorcontrib>Mwilambwe-Tshilobo, Laetitia</creatorcontrib><creatorcontrib>Briguglio, John J</creatorcontrib><creatorcontrib>Natan, Ryan G</creatorcontrib><creatorcontrib>Geffen, Maria N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aizenberg, Mark</au><au>Mwilambwe-Tshilobo, Laetitia</au><au>Briguglio, John J</au><au>Natan, Ryan G</au><au>Geffen, Maria N</au><au>Froemke, Robert Crooks</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>13</volume><issue>12</issue><spage>e1002308</spage><epage>e1002308</epage><pages>e1002308-e1002308</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26629746</pmid><doi>10.1371/journal.pbio.1002308</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2015-12, Vol.13 (12), p.e1002308-e1002308 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1764353896 |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Acoustic Stimulation Animals Auditory cortex Auditory Cortex - physiology Auditory Cortex - radiation effects Auditory pathways Behavior Behavior, Animal - radiation effects Biological control systems Biomarkers - metabolism Conditioning, Classical Conditioning, Operant Discrimination Discrimination Learning - radiation effects Ears & hearing Experiments Generalization, Response - radiation effects Instinct Interneurons - physiology Interneurons - radiation effects Light Luminescent Proteins - genetics Luminescent Proteins - metabolism Male Mice Mice, Inbred C57BL Mice, Transgenic Models, Neurological Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurological research Neurons Parvalbumins - genetics Parvalbumins - metabolism Physiological aspects Population Recombinant Fusion Proteins - metabolism Rodents |
title | Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20Regulation%20of%20Innate%20and%20Learned%20Behaviors%20That%20Rely%20on%20Frequency%20Discrimination%20by%20Cortical%20Inhibitory%20Neurons&rft.jtitle=PLoS%20biology&rft.au=Aizenberg,%20Mark&rft.date=2015-12-01&rft.volume=13&rft.issue=12&rft.spage=e1002308&rft.epage=e1002308&rft.pages=e1002308-e1002308&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002308&rft_dat=%3Cgale_plos_%3EA453915817%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c667t-c3a563afb14bb0e171c25c7a169e0004699f17ccaef0cf6516e34ffaf58b82cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744662701&rft_id=info:pmid/26629746&rft_galeid=A453915817&rfr_iscdi=true |