Loading…

Effects of Physiological Internal Noise on Model Predictions of Concurrent Vowel Identification for Normal-Hearing Listeners

Previous studies have shown that concurrent vowel identification improves with increasing temporal onset asynchrony of the vowels, even if the vowels have the same fundamental frequency. The current study investigated the possible underlying neural processing involved in concurrent vowel perception....

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-02, Vol.11 (2), p.e0149128-e0149128
Main Authors: Hedrick, Mark S, Moon, Il Joon, Woo, Jihwan, Won, Jong Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous studies have shown that concurrent vowel identification improves with increasing temporal onset asynchrony of the vowels, even if the vowels have the same fundamental frequency. The current study investigated the possible underlying neural processing involved in concurrent vowel perception. The individual vowel stimuli from a previously published study were used as inputs for a phenomenological auditory-nerve (AN) model. Spectrotemporal representations of simulated neural excitation patterns were constructed (i.e., neurograms) and then matched quantitatively with the neurograms of the single vowels using the Neurogram Similarity Index Measure (NSIM). A novel computational decision model was used to predict concurrent vowel identification. To facilitate optimum matches between the model predictions and the behavioral human data, internal noise was added at either neurogram generation or neurogram matching using the NSIM procedure. The best fit to the behavioral data was achieved with a signal-to-noise ratio (SNR) of 8 dB for internal noise added at the neurogram but with a much smaller amount of internal noise (SNR of 60 dB) for internal noise added at the level of the NSIM computations. The results suggest that accurate modeling of concurrent vowel data from listeners with normal hearing may partly depend on internal noise and where internal noise is hypothesized to occur during the concurrent vowel identification process.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0149128