Loading…

Two Small Molecules Block Oral Epithelial Cell Invasion by Porphyromons gingivalis

Porphyromonas gingivalis is a keystone pathogen of periodontitis. One of its bacterial characteristics is the ability to invade various host cells, including nonphagocytic epithelial cells and fibroblasts, which is known to facilitate P. gingivalis adaptation and survival in the gingival environment...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-02, Vol.11 (2), p.e0149618-e0149618
Main Authors: Ho, Meng-Hsuan, Huang, Li, Goodwin, J Shawn, Dong, Xinhong, Chen, Chin-Ho, Xie, Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porphyromonas gingivalis is a keystone pathogen of periodontitis. One of its bacterial characteristics is the ability to invade various host cells, including nonphagocytic epithelial cells and fibroblasts, which is known to facilitate P. gingivalis adaptation and survival in the gingival environment. In this study, we investigated two small compounds, Alop1 and dynasore, for their role in inhibition of P. gingivalis invasion. Using confocal microscopy, we showed that these two compounds significantly reduced invasion of P. gingivalis and its outer membrane vesicles into human oral keratinocytes in a dose-dependent manner. The inhibitory effects of dynasore, a dynamin inhibitor, on the bacterial entry is consistent with the notion that P. gingivalis invasion is mediated by a clathrin-mediated endocytic machinery. We also observed that microtubule arrangement, but not actin, was altered in the host cells treated with Alop1 or dynasore, suggesting an involvement of microtubule in this inhibitory activity. This work provides an opportunity to develop compounds against P. gingivalis infection.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0149618