Loading…

Effects of Phytoecdysteroids (PEDS) Extracted from Cyanotis arachnoidea on Rumen Fermentation, Enzyme Activity and Microbial Efficiency in a Continuous-Culture System

The objective of this study was to evaluate the effects of supplementation of phytoecdysteroids (PEDS) extracted from Cyanotis arachnoidea on rumen fermentation, enzymes activity and microbial efficiency in a dual flow continuous-culture system. A single-factor experimental design was used with twel...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-04, Vol.11 (4), p.e0153584-e0153584
Main Authors: Li, Deyong, Zhang, Yawei, Cui, Zhenliang, He, Liwen, Chen, Wanbao, Meng, Qingxiang, Ren, Liping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to evaluate the effects of supplementation of phytoecdysteroids (PEDS) extracted from Cyanotis arachnoidea on rumen fermentation, enzymes activity and microbial efficiency in a dual flow continuous-culture system. A single-factor experimental design was used with twelve fermenters in 4 groups with 3 replicates each. Fermenters were incubated for a total of 7 days that included first 4 days for adaptation and last 3 days for sampling. PEDS was added at levels of zero (as control), 5, 10, and 15 mg/g of the substrate (DM). The results showed that increasing supplementation levels of PEDS resulted in incremental digestibility of dry matter (DMD) (quadratic, P = 0.001) and organic matter (OMD) (quadratic, P = 0.031), but unchanged digestibility of neutral detergent fiber (NDFD), crude protein (CPD) and acid detergent acid (ADFD). As supplementation levels of PEDS increased, there were decreased response in the concentration of ammonia nitrogen (NH3-N) (linear, P = 0.015) and increased response in molar proportions of butyrate (linear, P = 0.004), but unchanged response in total volatile fatty acid (TVFA) and the molar proportion of acetate and propionate, respectively. Increasing PEDS supplementation levels decreased the ratio of acetate to propionate (linear, P = 0.038), suggesting an alteration of rumen fermentation pattern occurring due to PEDS supplementation in the diet. Supplementation of PEDS significantly increased activities of glutamate dehydrogenase (quadratic, P = 0.001), alanine dehydrogenase (quadratic, P = 0.004), glutamate synthase (linear, P = 0.038), glutamine synthetase (quadratic, P = 0.011), respectively. There were no discernible differences in the activity of carboxymethyl cellulose (CMCase), xylanase and protease regardless of the treatments. The daily production of microbial nitrogen (linear, P = 0.002) and microbial efficiency (MOEEF) (linear, P = 0.001) increased linearly as supplementation levels of PEDS increased. The decreased response of fluid NH3-N and the increased response of MN indicated that PEDS positively increased the synthesis of microbial proteins.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0153584