Loading…

Functional and Structural Analyses of CYP1B1 Variants Linked to Congenital and Adult-Onset Glaucoma to Investigate the Molecular Basis of These Diseases

Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-05, Vol.11 (5), p.e0156252-e0156252
Main Authors: Banerjee, Antara, Chakraborty, Subhadip, Chakraborty, Abhijit, Chakrabarti, Saikat, Ray, Kunal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis of the variable phenotypes resulting from the defects in CYP1B1 by using subclones of 23 CYP1B1 mutants reported in glaucoma patients, in a cell based system by measuring the dual activity of the enzyme to metabolize both retinol and 17β-estradiol. Most variants linked to POAG showed low steroid metabolism while null or very high retinol metabolism was observed in variants identified in PCG. We examined the translational turnover rates of mutant proteins after the addition of cycloheximide and observed that the levels of enzyme activity mostly corroborated the translational turnover rate. We performed extensive normal mode analysis and molecular-dynamics-simulations-based structural analyses and observed significant variation of fluctuation in certain segmental parts of the mutant proteins, especially at the B-C and F-G loops, which were previously shown to affect the dynamic behavior and ligand entry/exit properties of the cytochrome P450 family of proteins. Our molecular study corroborates the structural analysis, and suggests that the pathologic state of the carrier of CYP1B1 mutations is determined by the allelic state of the gene. To our knowledge, this is the first attempt to dissect biological activities of CYP1B1 for correlation with congenital and adult onset glaucomas.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0156252