Loading…

Meta-Analysis of EMT Datasets Reveals Different Types of EMT

As a critical process during embryonic development, cancer progression and cell fate conversions, epithelial-mesenchymal transition (EMT) has been extensively studied over the last several decades. To further understand the nature of EMT, we performed meta-analysis of multiple microarray datasets to...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-06, Vol.11 (6), p.e0156839-e0156839
Main Authors: Liang, Lining, Sun, Hao, Zhang, Wei, Zhang, Mengdan, Yang, Xiao, Kuang, Rui, Zheng, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a critical process during embryonic development, cancer progression and cell fate conversions, epithelial-mesenchymal transition (EMT) has been extensively studied over the last several decades. To further understand the nature of EMT, we performed meta-analysis of multiple microarray datasets to identify the related generic signature. In this study, 24 human and 17 mouse microarray datasets were integrated to identify conserved gene expression changes in different types of EMT. Our integrative analysis revealed that there is low agreement among the list of the identified signature genes and three other lists in previous studies. Since removing the datasets with weakly-induced EMT from the analysis did not significantly improve the overlapping in the signature-gene lists, we hypothesized the existence of different types of EMT. This hypothesis was further supported by the grouping of 74 human EMT-induction samples into five distinct clusters, and the identification of distinct pathways in these different clusters of EMT samples. The five clusters of EMT-induction samples also improves the understanding of the characteristics of different EMT types. Therefore, we concluded the existence of different types of EMT was the possible reason for its complex role in multiple biological processes.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0156839