Loading…

The Impact of Task Demands on Fixation-Related Brain Potentials during Guided Search

Recording synchronous data from EEG and eye-tracking provides a unique methodological approach for measuring the sensory and cognitive processes of overt visual search. Using this approach we obtained fixation related potentials (FRPs) during a guided visual search task specifically focusing on the...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-06, Vol.11 (6), p.e0157260-e0157260
Main Authors: Ries, Anthony J, Touryan, Jon, Ahrens, Barry, Connolly, Patrick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recording synchronous data from EEG and eye-tracking provides a unique methodological approach for measuring the sensory and cognitive processes of overt visual search. Using this approach we obtained fixation related potentials (FRPs) during a guided visual search task specifically focusing on the lambda and P3 components. An outstanding question is whether the lambda and P3 FRP components are influenced by concurrent task demands. We addressed this question by obtaining simultaneous eye-movement and electroencephalographic (EEG) measures during a guided visual search task while parametrically modulating working memory load using an auditory N-back task. Participants performed the guided search task alone, while ignoring binaurally presented digits, or while using the auditory information in a 0, 1, or 2-back task. The results showed increased reaction time and decreased accuracy in both the visual search and N-back tasks as a function of auditory load. Moreover, high auditory task demands increased the P3 but not the lambda latency while the amplitude of both lambda and P3 was reduced during high auditory task demands. The results show that both early and late stages of visual processing indexed by FRPs are significantly affected by concurrent task demands imposed by auditory working memory.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0157260