Loading…

Improved Active Harmonic Current Elimination Based on Voltage Detection

With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG) interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (AR...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-06, Vol.11 (6), p.e0157057-e0157057
Main Authors: Tan, Tianyuan, Dong, Shuan, Huang, Yingwei, Liu, Jian, Le, Jian, Liu, Kaipei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG) interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (ARD) and harmonic voltage compensator (HVC) based on voltage detection can effectively reduce the harmonic distortions in selected areas of distribution systems. However, it is found out that when traditional ARD algorithm is used to eliminate harmonic current injected by non-linear loads, its performance is constrained by stability problems and can at most eliminate half of the load harmonic currents. Thus, inspired by the duality between ARD and HVC, this paper presents a novel improved resistive active power filter (R-APF) algorithm based on integral-decoupling control. The design guideline for its parameters is then investigated through carefully analyzing the closed-loop poles' trajectory. Computer studies demonstrate that the proposed algorithm can effectively mitigate the load harmonic currents and its performance is much better than traditional ARD based on proportional control.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0157057