Loading…
Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids
In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more phy...
Saved in:
Published in: | PloS one 2016-06, Vol.11 (6), p.e0156942-e0156942 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c559t-4c7f4eecb657879a6a855b7aaa00ddd2c76e5437aedb4b017641005b47a374163 |
---|---|
cites | cdi_FETCH-LOGICAL-c559t-4c7f4eecb657879a6a855b7aaa00ddd2c76e5437aedb4b017641005b47a374163 |
container_end_page | e0156942 |
container_issue | 6 |
container_start_page | e0156942 |
container_title | PloS one |
container_volume | 11 |
creator | Barbier, Michaël Jaensch, Steffen Cornelissen, Frans Vidic, Suzana Gjerde, Kjersti de Hoogt, Ronald Graeser, Ralph Gustin, Emmanuel Chong, Yolanda T |
description | In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. |
doi_str_mv | 10.1371/journal.pone.0156942 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1797237863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d6adf23124fc40dca32e5c00a44812b3</doaj_id><sourcerecordid>1808631677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-4c7f4eecb657879a6a855b7aaa00ddd2c76e5437aedb4b017641005b47a374163</originalsourceid><addsrcrecordid>eNqFUk2P0zAUjBCIXRb-AQJLXLik-Ct2ckGqyi5U6opD4Wy92E6a4sbFdpAW8eNxaXe1i5A42bLnzcwbTVG8JHhGmCTvtn4KI7jZ3o92hkklGk4fFeekYbQUFLPH9-5nxbMYtxhXrBbiaXFGJcOsJuy8-HXp3LCPfjBobfudHROkwY_o2hvrUOcDmmeRm5_D2KPV0G9SOU_JjhMkaxD7gBZ-7LwGh5Y76C1aJ9DfIvIdunKTDzbqzIiuJ5eGcmGdmxwEtN5vbMiK8XnxpAMX7YvTeVF8vbr8svhUrj5_XC7mq1JXVZNKrmXHrdWtqGQtGxBQV1UrAQBjYwzVUtiKMwnWtLzFRApO8q4tl8AkJ4JdFK-PvHvnozoFFxWRjaRM1oJlxPKIMB62ah-GHYQb5WFQfx586BWENGhnlRFgOsoI5Z3m2Ghg1FYaY-C8JrQ9cL0_qU3tzppDAgHcA9KHP-OwUb3_oXiDG0bqTPD2RBD898nGpHZDDtI5GK2fsu8aZ89ESPl_aF6xllTUB1tv_oL-Owh-ROngYwy2u_NNsDr07nZKHXqnTr3LY6_u73w3dFs09hsGq9c3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797237863</pqid></control><display><type>article</type><title>Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Barbier, Michaël ; Jaensch, Steffen ; Cornelissen, Frans ; Vidic, Suzana ; Gjerde, Kjersti ; de Hoogt, Ronald ; Graeser, Ralph ; Gustin, Emmanuel ; Chong, Yolanda T</creator><creatorcontrib>Barbier, Michaël ; Jaensch, Steffen ; Cornelissen, Frans ; Vidic, Suzana ; Gjerde, Kjersti ; de Hoogt, Ronald ; Graeser, Ralph ; Gustin, Emmanuel ; Chong, Yolanda T ; IMI PREDECT Consortium</creatorcontrib><description>In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0156942</identifier><identifier>PMID: 27303813</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Attenuation ; Automation ; Cancer ; Cancer-Associated Fibroblasts - cytology ; Cell culture ; Cell Culture Techniques - methods ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival ; Computer Simulation ; Consortia ; Embryos ; Fluorescence ; Humans ; Image acquisition ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging, Three-Dimensional - methods ; Light ; Medicine and Health Sciences ; Methods ; Micrometers ; Microscopy ; Microscopy, Confocal - methods ; Models, Biological ; Pharmaceutical industry ; Physical Sciences ; Quantitative analysis ; Reproducibility of Results ; Research and Analysis Methods ; Spheroids ; Spheroids, Cellular - cytology ; Stacks ; Stem cells ; Three dimensional models ; Tumor Microenvironment ; Two dimensional models ; Urology</subject><ispartof>PloS one, 2016-06, Vol.11 (6), p.e0156942-e0156942</ispartof><rights>2016 Barbier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Barbier et al 2016 Barbier et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-4c7f4eecb657879a6a855b7aaa00ddd2c76e5437aedb4b017641005b47a374163</citedby><cites>FETCH-LOGICAL-c559t-4c7f4eecb657879a6a855b7aaa00ddd2c76e5437aedb4b017641005b47a374163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1797237863/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1797237863?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27303813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbier, Michaël</creatorcontrib><creatorcontrib>Jaensch, Steffen</creatorcontrib><creatorcontrib>Cornelissen, Frans</creatorcontrib><creatorcontrib>Vidic, Suzana</creatorcontrib><creatorcontrib>Gjerde, Kjersti</creatorcontrib><creatorcontrib>de Hoogt, Ronald</creatorcontrib><creatorcontrib>Graeser, Ralph</creatorcontrib><creatorcontrib>Gustin, Emmanuel</creatorcontrib><creatorcontrib>Chong, Yolanda T</creatorcontrib><creatorcontrib>IMI PREDECT Consortium</creatorcontrib><title>Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation.</description><subject>Algorithms</subject><subject>Attenuation</subject><subject>Automation</subject><subject>Cancer</subject><subject>Cancer-Associated Fibroblasts - cytology</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Computer Simulation</subject><subject>Consortia</subject><subject>Embryos</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Light</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Micrometers</subject><subject>Microscopy</subject><subject>Microscopy, Confocal - methods</subject><subject>Models, Biological</subject><subject>Pharmaceutical industry</subject><subject>Physical Sciences</subject><subject>Quantitative analysis</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Spheroids</subject><subject>Spheroids, Cellular - cytology</subject><subject>Stacks</subject><subject>Stem cells</subject><subject>Three dimensional models</subject><subject>Tumor Microenvironment</subject><subject>Two dimensional models</subject><subject>Urology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUk2P0zAUjBCIXRb-AQJLXLik-Ct2ckGqyi5U6opD4Wy92E6a4sbFdpAW8eNxaXe1i5A42bLnzcwbTVG8JHhGmCTvtn4KI7jZ3o92hkklGk4fFeekYbQUFLPH9-5nxbMYtxhXrBbiaXFGJcOsJuy8-HXp3LCPfjBobfudHROkwY_o2hvrUOcDmmeRm5_D2KPV0G9SOU_JjhMkaxD7gBZ-7LwGh5Y76C1aJ9DfIvIdunKTDzbqzIiuJ5eGcmGdmxwEtN5vbMiK8XnxpAMX7YvTeVF8vbr8svhUrj5_XC7mq1JXVZNKrmXHrdWtqGQtGxBQV1UrAQBjYwzVUtiKMwnWtLzFRApO8q4tl8AkJ4JdFK-PvHvnozoFFxWRjaRM1oJlxPKIMB62ah-GHYQb5WFQfx586BWENGhnlRFgOsoI5Z3m2Ghg1FYaY-C8JrQ9cL0_qU3tzppDAgHcA9KHP-OwUb3_oXiDG0bqTPD2RBD898nGpHZDDtI5GK2fsu8aZ89ESPl_aF6xllTUB1tv_oL-Owh-ROngYwy2u_NNsDr07nZKHXqnTr3LY6_u73w3dFs09hsGq9c3</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Barbier, Michaël</creator><creator>Jaensch, Steffen</creator><creator>Cornelissen, Frans</creator><creator>Vidic, Suzana</creator><creator>Gjerde, Kjersti</creator><creator>de Hoogt, Ronald</creator><creator>Graeser, Ralph</creator><creator>Gustin, Emmanuel</creator><creator>Chong, Yolanda T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160601</creationdate><title>Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids</title><author>Barbier, Michaël ; Jaensch, Steffen ; Cornelissen, Frans ; Vidic, Suzana ; Gjerde, Kjersti ; de Hoogt, Ronald ; Graeser, Ralph ; Gustin, Emmanuel ; Chong, Yolanda T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-4c7f4eecb657879a6a855b7aaa00ddd2c76e5437aedb4b017641005b47a374163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Attenuation</topic><topic>Automation</topic><topic>Cancer</topic><topic>Cancer-Associated Fibroblasts - cytology</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Computer Simulation</topic><topic>Consortia</topic><topic>Embryos</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Light</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Micrometers</topic><topic>Microscopy</topic><topic>Microscopy, Confocal - methods</topic><topic>Models, Biological</topic><topic>Pharmaceutical industry</topic><topic>Physical Sciences</topic><topic>Quantitative analysis</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Spheroids</topic><topic>Spheroids, Cellular - cytology</topic><topic>Stacks</topic><topic>Stem cells</topic><topic>Three dimensional models</topic><topic>Tumor Microenvironment</topic><topic>Two dimensional models</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbier, Michaël</creatorcontrib><creatorcontrib>Jaensch, Steffen</creatorcontrib><creatorcontrib>Cornelissen, Frans</creatorcontrib><creatorcontrib>Vidic, Suzana</creatorcontrib><creatorcontrib>Gjerde, Kjersti</creatorcontrib><creatorcontrib>de Hoogt, Ronald</creatorcontrib><creatorcontrib>Graeser, Ralph</creatorcontrib><creatorcontrib>Gustin, Emmanuel</creatorcontrib><creatorcontrib>Chong, Yolanda T</creatorcontrib><creatorcontrib>IMI PREDECT Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbier, Michaël</au><au>Jaensch, Steffen</au><au>Cornelissen, Frans</au><au>Vidic, Suzana</au><au>Gjerde, Kjersti</au><au>de Hoogt, Ronald</au><au>Graeser, Ralph</au><au>Gustin, Emmanuel</au><au>Chong, Yolanda T</au><aucorp>IMI PREDECT Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>e0156942</spage><epage>e0156942</epage><pages>e0156942-e0156942</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27303813</pmid><doi>10.1371/journal.pone.0156942</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-06, Vol.11 (6), p.e0156942-e0156942 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1797237863 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Attenuation Automation Cancer Cancer-Associated Fibroblasts - cytology Cell culture Cell Culture Techniques - methods Cell Line Cell Line, Tumor Cell Proliferation Cell Survival Computer Simulation Consortia Embryos Fluorescence Humans Image acquisition Image processing Image Processing, Computer-Assisted - methods Image segmentation Imaging, Three-Dimensional - methods Light Medicine and Health Sciences Methods Micrometers Microscopy Microscopy, Confocal - methods Models, Biological Pharmaceutical industry Physical Sciences Quantitative analysis Reproducibility of Results Research and Analysis Methods Spheroids Spheroids, Cellular - cytology Stacks Stem cells Three dimensional models Tumor Microenvironment Two dimensional models Urology |
title | Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ellipsoid%20Segmentation%20Model%20for%20Analyzing%20Light-Attenuated%203D%20Confocal%20Image%20Stacks%20of%20Fluorescent%20Multi-Cellular%20Spheroids&rft.jtitle=PloS%20one&rft.au=Barbier,%20Micha%C3%ABl&rft.aucorp=IMI%20PREDECT%20Consortium&rft.date=2016-06-01&rft.volume=11&rft.issue=6&rft.spage=e0156942&rft.epage=e0156942&rft.pages=e0156942-e0156942&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0156942&rft_dat=%3Cproquest_plos_%3E1808631677%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-4c7f4eecb657879a6a855b7aaa00ddd2c76e5437aedb4b017641005b47a374163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1797237863&rft_id=info:pmid/27303813&rfr_iscdi=true |