Loading…
A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF
With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concept...
Saved in:
Published in: | PloS one 2016-06, Vol.11 (6), p.e0157428-e0157428 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933 |
---|---|
cites | cdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933 |
container_end_page | e0157428 |
container_issue | 6 |
container_start_page | e0157428 |
container_title | PloS one |
container_volume | 11 |
creator | Ali, Nouman Bajwa, Khalid Bashir Sablatnig, Robert Chatzichristofis, Savvas A Iqbal, Zeshan Rashid, Muhammad Habib, Hafiz Adnan |
description | With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. |
doi_str_mv | 10.1371/journal.pone.0157428 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1797688118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20ad61e4899b4b23a451fb03322d2b70</doaj_id><sourcerecordid>4092939201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqXwDxBYYsNmpn7G9gapVAwNqkDqA5bWje0MGWXiqZ2MxL_H00mrtkJi5cc99_jz1SmKtwTPCZPkeBXG2EM334TezzERklP1rDgkmtFZSTF7_mB_ULxKaYWxYKosXxYHVDIiCCaHxbcT9D1sfYeqNSw9uvBDbP0WOvQZknco9Ohnm8Z8_hWiS6jqB7-MMLS5EBp0WS2uEPQOXV5fLF4XLxrokn8zrUfF9eLL1enZ7PzH1-r05HxmhdDDTFvaOOAcU934Wuu6lpiKGgsAwCXDonaW61qB0NIxwJaW0tqScCWkFJqxo-L93nfThWSmMSRDpJalUoSorKj2ChdgZTaxXUP8YwK05vYixKWBOLS284ZicCXxXGUQXlMGXJCmxoxR6mgmy16fptfGeu2d9f0QoXtk-rjSt7_NMmwN14QSssP9OBnEcDP6NJh1m6zvOuh9GDO3wqqkkmj5f6nUmVNktiz98ET670HwvcrGkFL0zT03wWaXorsus0uRmVKU2949_PN9011s2F9uvcIn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797688118</pqid></control><display><type>article</type><title>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ali, Nouman ; Bajwa, Khalid Bashir ; Sablatnig, Robert ; Chatzichristofis, Savvas A ; Iqbal, Zeshan ; Rashid, Muhammad ; Habib, Hafiz Adnan</creator><contributor>Rubin, Daniel L</contributor><creatorcontrib>Ali, Nouman ; Bajwa, Khalid Bashir ; Sablatnig, Robert ; Chatzichristofis, Savvas A ; Iqbal, Zeshan ; Rashid, Muhammad ; Habib, Hafiz Adnan ; Rubin, Daniel L</creatorcontrib><description>With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0157428</identifier><identifier>PMID: 27315101</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Archives ; Artificial Intelligence ; Automation ; Benchmarks ; Biology and Life Sciences ; Color ; Computer and Information Sciences ; Computer engineering ; Earth Sciences ; Fourier transforms ; Ground truth ; Image Interpretation, Computer-Assisted ; Image management ; Image Processing, Computer-Assisted ; Image retrieval ; Information Storage and Retrieval ; Integration ; International conferences ; Levels ; Multimedia ; Noise ; Pattern Recognition, Automated ; Queries ; Research and Analysis Methods ; Retrieval ; Robustness ; Semantics ; Support Vector Machine</subject><ispartof>PloS one, 2016-06, Vol.11 (6), p.e0157428-e0157428</ispartof><rights>2016 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Ali et al 2016 Ali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</citedby><cites>FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1797688118/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1797688118?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27315101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rubin, Daniel L</contributor><creatorcontrib>Ali, Nouman</creatorcontrib><creatorcontrib>Bajwa, Khalid Bashir</creatorcontrib><creatorcontrib>Sablatnig, Robert</creatorcontrib><creatorcontrib>Chatzichristofis, Savvas A</creatorcontrib><creatorcontrib>Iqbal, Zeshan</creatorcontrib><creatorcontrib>Rashid, Muhammad</creatorcontrib><creatorcontrib>Habib, Hafiz Adnan</creatorcontrib><title>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.</description><subject>Algorithms</subject><subject>Archives</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Benchmarks</subject><subject>Biology and Life Sciences</subject><subject>Color</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Earth Sciences</subject><subject>Fourier transforms</subject><subject>Ground truth</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image management</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Integration</subject><subject>International conferences</subject><subject>Levels</subject><subject>Multimedia</subject><subject>Noise</subject><subject>Pattern Recognition, Automated</subject><subject>Queries</subject><subject>Research and Analysis Methods</subject><subject>Retrieval</subject><subject>Robustness</subject><subject>Semantics</subject><subject>Support Vector Machine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAUhSMEoqXwDxBYYsNmpn7G9gapVAwNqkDqA5bWje0MGWXiqZ2MxL_H00mrtkJi5cc99_jz1SmKtwTPCZPkeBXG2EM334TezzERklP1rDgkmtFZSTF7_mB_ULxKaYWxYKosXxYHVDIiCCaHxbcT9D1sfYeqNSw9uvBDbP0WOvQZknco9Ohnm8Z8_hWiS6jqB7-MMLS5EBp0WS2uEPQOXV5fLF4XLxrokn8zrUfF9eLL1enZ7PzH1-r05HxmhdDDTFvaOOAcU934Wuu6lpiKGgsAwCXDonaW61qB0NIxwJaW0tqScCWkFJqxo-L93nfThWSmMSRDpJalUoSorKj2ChdgZTaxXUP8YwK05vYixKWBOLS284ZicCXxXGUQXlMGXJCmxoxR6mgmy16fptfGeu2d9f0QoXtk-rjSt7_NMmwN14QSssP9OBnEcDP6NJh1m6zvOuh9GDO3wqqkkmj5f6nUmVNktiz98ET670HwvcrGkFL0zT03wWaXorsus0uRmVKU2949_PN9011s2F9uvcIn</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Ali, Nouman</creator><creator>Bajwa, Khalid Bashir</creator><creator>Sablatnig, Robert</creator><creator>Chatzichristofis, Savvas A</creator><creator>Iqbal, Zeshan</creator><creator>Rashid, Muhammad</creator><creator>Habib, Hafiz Adnan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160601</creationdate><title>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</title><author>Ali, Nouman ; Bajwa, Khalid Bashir ; Sablatnig, Robert ; Chatzichristofis, Savvas A ; Iqbal, Zeshan ; Rashid, Muhammad ; Habib, Hafiz Adnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Archives</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Benchmarks</topic><topic>Biology and Life Sciences</topic><topic>Color</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Earth Sciences</topic><topic>Fourier transforms</topic><topic>Ground truth</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image management</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Integration</topic><topic>International conferences</topic><topic>Levels</topic><topic>Multimedia</topic><topic>Noise</topic><topic>Pattern Recognition, Automated</topic><topic>Queries</topic><topic>Research and Analysis Methods</topic><topic>Retrieval</topic><topic>Robustness</topic><topic>Semantics</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Nouman</creatorcontrib><creatorcontrib>Bajwa, Khalid Bashir</creatorcontrib><creatorcontrib>Sablatnig, Robert</creatorcontrib><creatorcontrib>Chatzichristofis, Savvas A</creatorcontrib><creatorcontrib>Iqbal, Zeshan</creatorcontrib><creatorcontrib>Rashid, Muhammad</creatorcontrib><creatorcontrib>Habib, Hafiz Adnan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Nouman</au><au>Bajwa, Khalid Bashir</au><au>Sablatnig, Robert</au><au>Chatzichristofis, Savvas A</au><au>Iqbal, Zeshan</au><au>Rashid, Muhammad</au><au>Habib, Hafiz Adnan</au><au>Rubin, Daniel L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>e0157428</spage><epage>e0157428</epage><pages>e0157428-e0157428</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27315101</pmid><doi>10.1371/journal.pone.0157428</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-06, Vol.11 (6), p.e0157428-e0157428 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1797688118 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Archives Artificial Intelligence Automation Benchmarks Biology and Life Sciences Color Computer and Information Sciences Computer engineering Earth Sciences Fourier transforms Ground truth Image Interpretation, Computer-Assisted Image management Image Processing, Computer-Assisted Image retrieval Information Storage and Retrieval Integration International conferences Levels Multimedia Noise Pattern Recognition, Automated Queries Research and Analysis Methods Retrieval Robustness Semantics Support Vector Machine |
title | A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Image%20Retrieval%20Based%20on%20Visual%20Words%20Integration%20of%20SIFT%20and%20SURF&rft.jtitle=PloS%20one&rft.au=Ali,%20Nouman&rft.date=2016-06-01&rft.volume=11&rft.issue=6&rft.spage=e0157428&rft.epage=e0157428&rft.pages=e0157428-e0157428&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0157428&rft_dat=%3Cproquest_plos_%3E4092939201%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1797688118&rft_id=info:pmid/27315101&rfr_iscdi=true |