Loading…

A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF

With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concept...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-06, Vol.11 (6), p.e0157428-e0157428
Main Authors: Ali, Nouman, Bajwa, Khalid Bashir, Sablatnig, Robert, Chatzichristofis, Savvas A, Iqbal, Zeshan, Rashid, Muhammad, Habib, Hafiz Adnan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933
cites cdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933
container_end_page e0157428
container_issue 6
container_start_page e0157428
container_title PloS one
container_volume 11
creator Ali, Nouman
Bajwa, Khalid Bashir
Sablatnig, Robert
Chatzichristofis, Savvas A
Iqbal, Zeshan
Rashid, Muhammad
Habib, Hafiz Adnan
description With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.
doi_str_mv 10.1371/journal.pone.0157428
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1797688118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20ad61e4899b4b23a451fb03322d2b70</doaj_id><sourcerecordid>4092939201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqXwDxBYYsNmpn7G9gapVAwNqkDqA5bWje0MGWXiqZ2MxL_H00mrtkJi5cc99_jz1SmKtwTPCZPkeBXG2EM334TezzERklP1rDgkmtFZSTF7_mB_ULxKaYWxYKosXxYHVDIiCCaHxbcT9D1sfYeqNSw9uvBDbP0WOvQZknco9Ohnm8Z8_hWiS6jqB7-MMLS5EBp0WS2uEPQOXV5fLF4XLxrokn8zrUfF9eLL1enZ7PzH1-r05HxmhdDDTFvaOOAcU934Wuu6lpiKGgsAwCXDonaW61qB0NIxwJaW0tqScCWkFJqxo-L93nfThWSmMSRDpJalUoSorKj2ChdgZTaxXUP8YwK05vYixKWBOLS284ZicCXxXGUQXlMGXJCmxoxR6mgmy16fptfGeu2d9f0QoXtk-rjSt7_NMmwN14QSssP9OBnEcDP6NJh1m6zvOuh9GDO3wqqkkmj5f6nUmVNktiz98ET670HwvcrGkFL0zT03wWaXorsus0uRmVKU2949_PN9011s2F9uvcIn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797688118</pqid></control><display><type>article</type><title>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ali, Nouman ; Bajwa, Khalid Bashir ; Sablatnig, Robert ; Chatzichristofis, Savvas A ; Iqbal, Zeshan ; Rashid, Muhammad ; Habib, Hafiz Adnan</creator><contributor>Rubin, Daniel L</contributor><creatorcontrib>Ali, Nouman ; Bajwa, Khalid Bashir ; Sablatnig, Robert ; Chatzichristofis, Savvas A ; Iqbal, Zeshan ; Rashid, Muhammad ; Habib, Hafiz Adnan ; Rubin, Daniel L</creatorcontrib><description>With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0157428</identifier><identifier>PMID: 27315101</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Archives ; Artificial Intelligence ; Automation ; Benchmarks ; Biology and Life Sciences ; Color ; Computer and Information Sciences ; Computer engineering ; Earth Sciences ; Fourier transforms ; Ground truth ; Image Interpretation, Computer-Assisted ; Image management ; Image Processing, Computer-Assisted ; Image retrieval ; Information Storage and Retrieval ; Integration ; International conferences ; Levels ; Multimedia ; Noise ; Pattern Recognition, Automated ; Queries ; Research and Analysis Methods ; Retrieval ; Robustness ; Semantics ; Support Vector Machine</subject><ispartof>PloS one, 2016-06, Vol.11 (6), p.e0157428-e0157428</ispartof><rights>2016 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Ali et al 2016 Ali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</citedby><cites>FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1797688118/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1797688118?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27315101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rubin, Daniel L</contributor><creatorcontrib>Ali, Nouman</creatorcontrib><creatorcontrib>Bajwa, Khalid Bashir</creatorcontrib><creatorcontrib>Sablatnig, Robert</creatorcontrib><creatorcontrib>Chatzichristofis, Savvas A</creatorcontrib><creatorcontrib>Iqbal, Zeshan</creatorcontrib><creatorcontrib>Rashid, Muhammad</creatorcontrib><creatorcontrib>Habib, Hafiz Adnan</creatorcontrib><title>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.</description><subject>Algorithms</subject><subject>Archives</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Benchmarks</subject><subject>Biology and Life Sciences</subject><subject>Color</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Earth Sciences</subject><subject>Fourier transforms</subject><subject>Ground truth</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image management</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Integration</subject><subject>International conferences</subject><subject>Levels</subject><subject>Multimedia</subject><subject>Noise</subject><subject>Pattern Recognition, Automated</subject><subject>Queries</subject><subject>Research and Analysis Methods</subject><subject>Retrieval</subject><subject>Robustness</subject><subject>Semantics</subject><subject>Support Vector Machine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAUhSMEoqXwDxBYYsNmpn7G9gapVAwNqkDqA5bWje0MGWXiqZ2MxL_H00mrtkJi5cc99_jz1SmKtwTPCZPkeBXG2EM334TezzERklP1rDgkmtFZSTF7_mB_ULxKaYWxYKosXxYHVDIiCCaHxbcT9D1sfYeqNSw9uvBDbP0WOvQZknco9Ohnm8Z8_hWiS6jqB7-MMLS5EBp0WS2uEPQOXV5fLF4XLxrokn8zrUfF9eLL1enZ7PzH1-r05HxmhdDDTFvaOOAcU934Wuu6lpiKGgsAwCXDonaW61qB0NIxwJaW0tqScCWkFJqxo-L93nfThWSmMSRDpJalUoSorKj2ChdgZTaxXUP8YwK05vYixKWBOLS284ZicCXxXGUQXlMGXJCmxoxR6mgmy16fptfGeu2d9f0QoXtk-rjSt7_NMmwN14QSssP9OBnEcDP6NJh1m6zvOuh9GDO3wqqkkmj5f6nUmVNktiz98ET670HwvcrGkFL0zT03wWaXorsus0uRmVKU2949_PN9011s2F9uvcIn</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Ali, Nouman</creator><creator>Bajwa, Khalid Bashir</creator><creator>Sablatnig, Robert</creator><creator>Chatzichristofis, Savvas A</creator><creator>Iqbal, Zeshan</creator><creator>Rashid, Muhammad</creator><creator>Habib, Hafiz Adnan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160601</creationdate><title>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</title><author>Ali, Nouman ; Bajwa, Khalid Bashir ; Sablatnig, Robert ; Chatzichristofis, Savvas A ; Iqbal, Zeshan ; Rashid, Muhammad ; Habib, Hafiz Adnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Archives</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Benchmarks</topic><topic>Biology and Life Sciences</topic><topic>Color</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Earth Sciences</topic><topic>Fourier transforms</topic><topic>Ground truth</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image management</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Integration</topic><topic>International conferences</topic><topic>Levels</topic><topic>Multimedia</topic><topic>Noise</topic><topic>Pattern Recognition, Automated</topic><topic>Queries</topic><topic>Research and Analysis Methods</topic><topic>Retrieval</topic><topic>Robustness</topic><topic>Semantics</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Nouman</creatorcontrib><creatorcontrib>Bajwa, Khalid Bashir</creatorcontrib><creatorcontrib>Sablatnig, Robert</creatorcontrib><creatorcontrib>Chatzichristofis, Savvas A</creatorcontrib><creatorcontrib>Iqbal, Zeshan</creatorcontrib><creatorcontrib>Rashid, Muhammad</creatorcontrib><creatorcontrib>Habib, Hafiz Adnan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Nouman</au><au>Bajwa, Khalid Bashir</au><au>Sablatnig, Robert</au><au>Chatzichristofis, Savvas A</au><au>Iqbal, Zeshan</au><au>Rashid, Muhammad</au><au>Habib, Hafiz Adnan</au><au>Rubin, Daniel L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>e0157428</spage><epage>e0157428</epage><pages>e0157428-e0157428</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27315101</pmid><doi>10.1371/journal.pone.0157428</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-06, Vol.11 (6), p.e0157428-e0157428
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1797688118
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Archives
Artificial Intelligence
Automation
Benchmarks
Biology and Life Sciences
Color
Computer and Information Sciences
Computer engineering
Earth Sciences
Fourier transforms
Ground truth
Image Interpretation, Computer-Assisted
Image management
Image Processing, Computer-Assisted
Image retrieval
Information Storage and Retrieval
Integration
International conferences
Levels
Multimedia
Noise
Pattern Recognition, Automated
Queries
Research and Analysis Methods
Retrieval
Robustness
Semantics
Support Vector Machine
title A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Image%20Retrieval%20Based%20on%20Visual%20Words%20Integration%20of%20SIFT%20and%20SURF&rft.jtitle=PloS%20one&rft.au=Ali,%20Nouman&rft.date=2016-06-01&rft.volume=11&rft.issue=6&rft.spage=e0157428&rft.epage=e0157428&rft.pages=e0157428-e0157428&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0157428&rft_dat=%3Cproquest_plos_%3E4092939201%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-9c2fda44029feb99bb7025b05aaa06305bdc49b8a597d3a0c267cc61485775933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1797688118&rft_id=info:pmid/27315101&rfr_iscdi=true