Loading…

A Diagnostic Scoring Model for Leptospirosis in Resource Limited Settings

Leptospirosis is a zoonotic infection with significant morbidity and mortality. The clinical presentation of leptospirosis is known to mimic the clinical profile of other prevalent tropical fevers. Laboratory confirmation of leptospirosis is based on the reference standard microscopic agglutination...

Full description

Saved in:
Bibliographic Details
Published in:PLoS neglected tropical diseases 2016-06, Vol.10 (6), p.e0004513-e0004513
Main Authors: Rajapakse, Senaka, Weeratunga, Praveen, Niloofa, Roshan, Fernando, Narmada, de Silva, Nipun Lakshitha, Rodrigo, Chaturaka, Maduranga, Sachith, Nandasiri, Nuwanthi, Premawansa, Sunil, Karunanayake, Lilani, de Silva, H Janaka, Handunnetti, Shiroma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Leptospirosis is a zoonotic infection with significant morbidity and mortality. The clinical presentation of leptospirosis is known to mimic the clinical profile of other prevalent tropical fevers. Laboratory confirmation of leptospirosis is based on the reference standard microscopic agglutination test (MAT), direct demonstration of the organism, and isolation by culture and DNA detection by polymerase chain reaction (PCR) amplification. However these methods of confirmation are not widely available in resource limited settings where the infection is prevalent, and reliance is placed on clinical features for provisional diagnosis. In this prospective study, we attempted to develop a model for diagnosis of leptospirosis, based on clinical features and standard laboratory test results. The diagnostic score was developed based on data from a prospective multicentre study in two hospitals in the Western Province of Sri Lanka. All patients presenting to these hospitals with a suspected diagnosis of leptospirosis, based on the WHO surveillance criteria, were recruited. Confirmed disease was defined as positive genus specific MAT (Leptospira biflexa). A derivation cohort and a validation cohort were randomly selected from available data. Clinical and laboratory manifestations associated with confirmed leptospirosis in the derivation cohort were selected for construction of a multivariate regression model with correlation matrices, and adjusted odds ratios were extracted for significant variables. The odds ratios thus derived were subsequently utilized in the criteria model, and sensitivity and specificity examined with ROC curves. A total of 592 patients were included in the final analysis with 450 (180 confirmed leptospirosis) in the derivation cohort and 142 (52 confirmed leptospirosis) in the validation cohort. The variables in the final model were: history of exposure to a possible source of leptospirosis (adjusted OR = 2.827; 95% CI = 1.517-5.435; p = 0.001) serum creatinine > 150 micromol/l (adjusted OR = 2.735; 95% CI = 1.374-4.901; p = 0.001), neutrophil differential percentage > 80.0% of total white blood cell count (adjusted OR 2.163; 95% CI = 1.309-3.847; p = 0.032), serum bilirubin > 30 micromol/l (adjusted OR = 1.717; 95% CI 0.938-3.456; p = 0.049) and platelet count < 85,000/mm3 (adjusted OR = 2.350; 95% CI = 1.481-4.513; p = 0.006). Hosmer-Lemeshow test for goodness of fit was 0.931. The Nagelkerke R2 was 0.622. The area under the curve (AUC) was
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0004513