Loading…
Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis
Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; h...
Saved in:
Published in: | PloS one 2016-07, Vol.11 (7), p.e0160158-e0160158 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c725t-ad74fb4b413e747ea96445772d98686d251578238652323956d96b997c49ea5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c725t-ad74fb4b413e747ea96445772d98686d251578238652323956d96b997c49ea5d3 |
container_end_page | e0160158 |
container_issue | 7 |
container_start_page | e0160158 |
container_title | PloS one |
container_volume | 11 |
creator | Stanojlovic, Milos Pang, Xiaosha Lin, Yifeng Stone, Sarrabeth Cvetanovic, Marija Lin, Wensheng |
description | Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE. |
doi_str_mv | 10.1371/journal.pone.0160158 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1807560964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A459396352</galeid><doaj_id>oai_doaj_org_article_8944b5857d6e423aa727f8b251fb559f</doaj_id><sourcerecordid>A459396352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-ad74fb4b413e747ea96445772d98686d251578238652323956d96b997c49ea5d3</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYqPwBggiISG4aIkd_71BqqZtVCpMGrBby0mcxpNjF9th28vwrDg0m1a0iylScuT8znc-H_tk2WtQLEBJwadLN3grzWLrrFoUgBQAsyfZIeAlnBNYlE_vxQfZixAuiwKXjJDn2QGkiBAG-GH2Z2U7Xemonc1dm1_IUA9G-vzYNi52ymhp8lPvrmKXn8g6Op-fq1ptxwDmx9eyVr6SUYV87UIYFdbuSvn8qxuJb2rwzoZc2iZfXo9RM3htNylxq7zulY1JfjlEp_t-sCpVTdqdNK6_SaWjDi-zZ600Qb2avrPs58nxj6Mv8_XZ6epouZ7XFOI4lw1FbYUqBEpFEVWSE4QwpbDhjDDSQAwwZTDtHsMSlhyThpOKc1ojriRuyln2dqe7NS6IqbVBAFZQTIqklojVjmicvBTb5F76G-GkFv8WnN8I6aOujRKMI1RhhmlDFIKllBTSllXJRFthzNuk9XmqNlS9aurUBy_Nnuj-H6s7sXG_BeIEJzdJ4MMk4N2vQYUoeh1qZYy0yg2jbwAYgwiAR6AFZXx8JfTdf-jDjZiojUx71bZ1yWI9ioolwrxM9lKTZ9niASo9jep1na5sq9P6XsLHvYTERHUdN3IIQay-nz-ePbvYZ9_fYzslTeyCM8N448M-iHZg7dNV9qq9Ow9QiHHibrshxokT08SltDf3z_Iu6XbEyr9cPSap</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807560964</pqid></control><display><type>article</type><title>Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Stanojlovic, Milos ; Pang, Xiaosha ; Lin, Yifeng ; Stone, Sarrabeth ; Cvetanovic, Marija ; Lin, Wensheng</creator><contributor>Fujinami, Robert Shin</contributor><creatorcontrib>Stanojlovic, Milos ; Pang, Xiaosha ; Lin, Yifeng ; Stone, Sarrabeth ; Cvetanovic, Marija ; Lin, Wensheng ; Fujinami, Robert Shin</creatorcontrib><description>Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0160158</identifier><identifier>PMID: 27466819</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amyotrophic lateral sclerosis ; Analysis ; Angiogenesis ; Angiogenesis Inhibitors - pharmacology ; Animal models ; Animals ; Antigens ; Apoptosis ; Ataxia ; Axons ; Axons - pathology ; Biology and Life Sciences ; Brain research ; Cell growth ; Cell survival ; Central nervous system ; Cerebellum ; Cerebral cortex ; Cortex (motor) ; Demyelination ; Disease ; Encephalomyelitis ; Encephalomyelitis, Autoimmune, Experimental - pathology ; Experimental allergic encephalomyelitis ; Female ; Indoles - pharmacology ; Inflammation ; Laboratory animals ; Lumbar Vertebrae ; Lymphocytes ; Lymphocytes T ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Motor neurons ; Motor Neurons - pathology ; Multiple sclerosis ; Myelin ; Nervous system ; Neurodegeneration ; Neurodegenerative diseases ; Neurogenesis ; Neurological diseases ; Neurons ; Neurosciences ; Neurotrophic factors ; Paralysis ; Permeability ; Pyrroles - pharmacology ; Research and Analysis Methods ; Risk factors ; Rodents ; Signal Transduction ; Signaling ; Spinal cord ; Spinal Cord - drug effects ; Spinal Cord - metabolism ; Spinal Cord - pathology ; Stroke ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Vascular endothelial growth factor receptor 2 ; Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>PloS one, 2016-07, Vol.11 (7), p.e0160158-e0160158</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Stanojlovic et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Stanojlovic et al 2016 Stanojlovic et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-ad74fb4b413e747ea96445772d98686d251578238652323956d96b997c49ea5d3</citedby><cites>FETCH-LOGICAL-c725t-ad74fb4b413e747ea96445772d98686d251578238652323956d96b997c49ea5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1807560964/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1807560964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27466819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fujinami, Robert Shin</contributor><creatorcontrib>Stanojlovic, Milos</creatorcontrib><creatorcontrib>Pang, Xiaosha</creatorcontrib><creatorcontrib>Lin, Yifeng</creatorcontrib><creatorcontrib>Stone, Sarrabeth</creatorcontrib><creatorcontrib>Cvetanovic, Marija</creatorcontrib><creatorcontrib>Lin, Wensheng</creatorcontrib><title>Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Ataxia</subject><subject>Axons</subject><subject>Axons - pathology</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Cell growth</subject><subject>Cell survival</subject><subject>Central nervous system</subject><subject>Cerebellum</subject><subject>Cerebral cortex</subject><subject>Cortex (motor)</subject><subject>Demyelination</subject><subject>Disease</subject><subject>Encephalomyelitis</subject><subject>Encephalomyelitis, Autoimmune, Experimental - pathology</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Female</subject><subject>Indoles - pharmacology</subject><subject>Inflammation</subject><subject>Laboratory animals</subject><subject>Lumbar Vertebrae</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Motor neurons</subject><subject>Motor Neurons - pathology</subject><subject>Multiple sclerosis</subject><subject>Myelin</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurogenesis</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotrophic factors</subject><subject>Paralysis</subject><subject>Permeability</subject><subject>Pyrroles - pharmacology</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Spinal cord</subject><subject>Spinal Cord - drug effects</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord - pathology</subject><subject>Stroke</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular endothelial growth factor receptor 2</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYqPwBggiISG4aIkd_71BqqZtVCpMGrBby0mcxpNjF9th28vwrDg0m1a0iylScuT8znc-H_tk2WtQLEBJwadLN3grzWLrrFoUgBQAsyfZIeAlnBNYlE_vxQfZixAuiwKXjJDn2QGkiBAG-GH2Z2U7Xemonc1dm1_IUA9G-vzYNi52ymhp8lPvrmKXn8g6Op-fq1ptxwDmx9eyVr6SUYV87UIYFdbuSvn8qxuJb2rwzoZc2iZfXo9RM3htNylxq7zulY1JfjlEp_t-sCpVTdqdNK6_SaWjDi-zZ600Qb2avrPs58nxj6Mv8_XZ6epouZ7XFOI4lw1FbYUqBEpFEVWSE4QwpbDhjDDSQAwwZTDtHsMSlhyThpOKc1ojriRuyln2dqe7NS6IqbVBAFZQTIqklojVjmicvBTb5F76G-GkFv8WnN8I6aOujRKMI1RhhmlDFIKllBTSllXJRFthzNuk9XmqNlS9aurUBy_Nnuj-H6s7sXG_BeIEJzdJ4MMk4N2vQYUoeh1qZYy0yg2jbwAYgwiAR6AFZXx8JfTdf-jDjZiojUx71bZ1yWI9ioolwrxM9lKTZ9niASo9jep1na5sq9P6XsLHvYTERHUdN3IIQay-nz-ePbvYZ9_fYzslTeyCM8N448M-iHZg7dNV9qq9Ow9QiHHibrshxokT08SltDf3z_Iu6XbEyr9cPSap</recordid><startdate>20160728</startdate><enddate>20160728</enddate><creator>Stanojlovic, Milos</creator><creator>Pang, Xiaosha</creator><creator>Lin, Yifeng</creator><creator>Stone, Sarrabeth</creator><creator>Cvetanovic, Marija</creator><creator>Lin, Wensheng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160728</creationdate><title>Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis</title><author>Stanojlovic, Milos ; Pang, Xiaosha ; Lin, Yifeng ; Stone, Sarrabeth ; Cvetanovic, Marija ; Lin, Wensheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-ad74fb4b413e747ea96445772d98686d251578238652323956d96b997c49ea5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Ataxia</topic><topic>Axons</topic><topic>Axons - pathology</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Cell growth</topic><topic>Cell survival</topic><topic>Central nervous system</topic><topic>Cerebellum</topic><topic>Cerebral cortex</topic><topic>Cortex (motor)</topic><topic>Demyelination</topic><topic>Disease</topic><topic>Encephalomyelitis</topic><topic>Encephalomyelitis, Autoimmune, Experimental - pathology</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Female</topic><topic>Indoles - pharmacology</topic><topic>Inflammation</topic><topic>Laboratory animals</topic><topic>Lumbar Vertebrae</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Motor neurons</topic><topic>Motor Neurons - pathology</topic><topic>Multiple sclerosis</topic><topic>Myelin</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurogenesis</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotrophic factors</topic><topic>Paralysis</topic><topic>Permeability</topic><topic>Pyrroles - pharmacology</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Spinal cord</topic><topic>Spinal Cord - drug effects</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord - pathology</topic><topic>Stroke</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular endothelial growth factor receptor 2</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanojlovic, Milos</creatorcontrib><creatorcontrib>Pang, Xiaosha</creatorcontrib><creatorcontrib>Lin, Yifeng</creatorcontrib><creatorcontrib>Stone, Sarrabeth</creatorcontrib><creatorcontrib>Cvetanovic, Marija</creatorcontrib><creatorcontrib>Lin, Wensheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanojlovic, Milos</au><au>Pang, Xiaosha</au><au>Lin, Yifeng</au><au>Stone, Sarrabeth</au><au>Cvetanovic, Marija</au><au>Lin, Wensheng</au><au>Fujinami, Robert Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-07-28</date><risdate>2016</risdate><volume>11</volume><issue>7</issue><spage>e0160158</spage><epage>e0160158</epage><pages>e0160158-e0160158</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27466819</pmid><doi>10.1371/journal.pone.0160158</doi><tpages>e0160158</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-07, Vol.11 (7), p.e0160158-e0160158 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1807560964 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amyotrophic lateral sclerosis Analysis Angiogenesis Angiogenesis Inhibitors - pharmacology Animal models Animals Antigens Apoptosis Ataxia Axons Axons - pathology Biology and Life Sciences Brain research Cell growth Cell survival Central nervous system Cerebellum Cerebral cortex Cortex (motor) Demyelination Disease Encephalomyelitis Encephalomyelitis, Autoimmune, Experimental - pathology Experimental allergic encephalomyelitis Female Indoles - pharmacology Inflammation Laboratory animals Lumbar Vertebrae Lymphocytes Lymphocytes T Medicine and Health Sciences Mice Mice, Inbred C57BL Motor neurons Motor Neurons - pathology Multiple sclerosis Myelin Nervous system Neurodegeneration Neurodegenerative diseases Neurogenesis Neurological diseases Neurons Neurosciences Neurotrophic factors Paralysis Permeability Pyrroles - pharmacology Research and Analysis Methods Risk factors Rodents Signal Transduction Signaling Spinal cord Spinal Cord - drug effects Spinal Cord - metabolism Spinal Cord - pathology Stroke Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism Vascular endothelial growth factor receptor 2 Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors Vascular Endothelial Growth Factor Receptor-2 - metabolism |
title | Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Vascular%20Endothelial%20Growth%20Factor%20Receptor%202%20Exacerbates%20Loss%20of%20Lower%20Motor%20Neurons%20and%20Axons%20during%20Experimental%20Autoimmune%20Encephalomyelitis&rft.jtitle=PloS%20one&rft.au=Stanojlovic,%20Milos&rft.date=2016-07-28&rft.volume=11&rft.issue=7&rft.spage=e0160158&rft.epage=e0160158&rft.pages=e0160158-e0160158&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0160158&rft_dat=%3Cgale_plos_%3EA459396352%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c725t-ad74fb4b413e747ea96445772d98686d251578238652323956d96b997c49ea5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807560964&rft_id=info:pmid/27466819&rft_galeid=A459396352&rfr_iscdi=true |