Loading…

Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System

Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-07, Vol.11 (7), p.e0159836-e0159836
Main Authors: Yin, Xiaoping, Huang, Xu, Feng, Yundi, Tan, Wenchang, Liu, Huaijun, Huo, Yunlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6). The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2). This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0159836