Loading…
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine...
Saved in:
Published in: | PloS one 2016-08, Vol.11 (8), p.e0161558-e0161558 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c725t-86dfe4c58703c6dbf3b5de65cb8cba06c5e22e37620d0aa2a55418d3194cfc9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c725t-86dfe4c58703c6dbf3b5de65cb8cba06c5e22e37620d0aa2a55418d3194cfc9d3 |
container_end_page | e0161558 |
container_issue | 8 |
container_start_page | e0161558 |
container_title | PloS one |
container_volume | 11 |
creator | Amoshahy, Mohammad Javad Shamsi, Mousa Sedaaghi, Mohammad Hossein |
description | Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. |
doi_str_mv | 10.1371/journal.pone.0161558 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1814156257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A461579373</galeid><doaj_id>oai_doaj_org_article_f33e5a2e98c1431aa03d9f02f9cfbc16</doaj_id><sourcerecordid>A461579373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-86dfe4c58703c6dbf3b5de65cb8cba06c5e22e37620d0aa2a55418d3194cfc9d3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MWOY8e-IK2qFlaqWET5OFqOY2e9cuJt7PSDX4_TTasN6qHKwcn4mTevxzNJ8hqCOUQF_LRxfdcKO9-6Vs0BJBBj-iQ5hAxlM5IB9HTv_SB54f0GAIwoIc-Tg6zABLAcHyYni_Sbu1Q2PbXq2pRWpctWdcGI9I8y9Tqk30X8kjF-fiW6Jl1tg2nMXxGMa9OFrV1nwrp5mTzTwnr1alyPkl-nJz-Pv87OVl-Wx4uzmSwyHGaUVFrlEtMCIEmqUqMSV4pgWVJZCkAkVlmmUBEtV0CITGCcQ1ohyHKpJavQUfJ2p7u1zvOxAp5DCnOISYaLSCx3ROXEhm8704juhjth-G3AdTUfD8Q1QgqLTDEqYY6gEABVTINMM6lLCUnU-jz-rS8bVUnVhk7Yieh0pzVrXrtLnjPGIEVR4MMo0LmLXvnAG-Olsla0yvW3vhlEFAP6GDQnNMNgsPXuP_ThQoxULeJZTatdtCgHUb7IY7MUDBWDw_kDVHwq1RgZO0ubGJ8kfJwkRCao61CL3nu-PP_xeHb1e8q-32PXStiw9s72Q5_5KZjvQNk57zul7-8DAj4Mxl01-DAYfByMmPZm_y7vk-4mAf0DtLEHfg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814156257</pqid></control><display><type>article</type><title>A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Amoshahy, Mohammad Javad ; Shamsi, Mousa ; Sedaaghi, Mohammad Hossein</creator><contributor>Deng, Yong</contributor><creatorcontrib>Amoshahy, Mohammad Javad ; Shamsi, Mousa ; Sedaaghi, Mohammad Hossein ; Deng, Yong</creatorcontrib><description>Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0161558</identifier><identifier>PMID: 27560945</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Biology and Life Sciences ; Computational Biology ; Computer and Information Sciences ; Computer Simulation ; Electrical engineering ; Evolutionary algorithms ; Exploitation ; Exploration ; Inertia ; International conferences ; Models, Statistical ; Optimization ; Optimization algorithms ; Optimization theory ; Particle swarm optimization ; Physical Sciences ; Problems ; Research and Analysis Methods ; S parameters ; Social Sciences ; Software ; Statistical analysis ; Strategy ; Swarm intelligence ; Time Factors</subject><ispartof>PloS one, 2016-08, Vol.11 (8), p.e0161558-e0161558</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Amoshahy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Amoshahy et al 2016 Amoshahy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-86dfe4c58703c6dbf3b5de65cb8cba06c5e22e37620d0aa2a55418d3194cfc9d3</citedby><cites>FETCH-LOGICAL-c725t-86dfe4c58703c6dbf3b5de65cb8cba06c5e22e37620d0aa2a55418d3194cfc9d3</cites><orcidid>0000-0002-2257-7607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1814156257/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1814156257?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27560945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Deng, Yong</contributor><creatorcontrib>Amoshahy, Mohammad Javad</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Sedaaghi, Mohammad Hossein</creatorcontrib><title>A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Electrical engineering</subject><subject>Evolutionary algorithms</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Inertia</subject><subject>International conferences</subject><subject>Models, Statistical</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization theory</subject><subject>Particle swarm optimization</subject><subject>Physical Sciences</subject><subject>Problems</subject><subject>Research and Analysis Methods</subject><subject>S parameters</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Swarm intelligence</subject><subject>Time Factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MWOY8e-IK2qFlaqWET5OFqOY2e9cuJt7PSDX4_TTasN6qHKwcn4mTevxzNJ8hqCOUQF_LRxfdcKO9-6Vs0BJBBj-iQ5hAxlM5IB9HTv_SB54f0GAIwoIc-Tg6zABLAcHyYni_Sbu1Q2PbXq2pRWpctWdcGI9I8y9Tqk30X8kjF-fiW6Jl1tg2nMXxGMa9OFrV1nwrp5mTzTwnr1alyPkl-nJz-Pv87OVl-Wx4uzmSwyHGaUVFrlEtMCIEmqUqMSV4pgWVJZCkAkVlmmUBEtV0CITGCcQ1ohyHKpJavQUfJ2p7u1zvOxAp5DCnOISYaLSCx3ROXEhm8704juhjth-G3AdTUfD8Q1QgqLTDEqYY6gEABVTINMM6lLCUnU-jz-rS8bVUnVhk7Yieh0pzVrXrtLnjPGIEVR4MMo0LmLXvnAG-Olsla0yvW3vhlEFAP6GDQnNMNgsPXuP_ThQoxULeJZTatdtCgHUb7IY7MUDBWDw_kDVHwq1RgZO0ubGJ8kfJwkRCao61CL3nu-PP_xeHb1e8q-32PXStiw9s72Q5_5KZjvQNk57zul7-8DAj4Mxl01-DAYfByMmPZm_y7vk-4mAf0DtLEHfg</recordid><startdate>20160825</startdate><enddate>20160825</enddate><creator>Amoshahy, Mohammad Javad</creator><creator>Shamsi, Mousa</creator><creator>Sedaaghi, Mohammad Hossein</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2257-7607</orcidid></search><sort><creationdate>20160825</creationdate><title>A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm</title><author>Amoshahy, Mohammad Javad ; Shamsi, Mousa ; Sedaaghi, Mohammad Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-86dfe4c58703c6dbf3b5de65cb8cba06c5e22e37620d0aa2a55418d3194cfc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Electrical engineering</topic><topic>Evolutionary algorithms</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Inertia</topic><topic>International conferences</topic><topic>Models, Statistical</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization theory</topic><topic>Particle swarm optimization</topic><topic>Physical Sciences</topic><topic>Problems</topic><topic>Research and Analysis Methods</topic><topic>S parameters</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Swarm intelligence</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amoshahy, Mohammad Javad</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Sedaaghi, Mohammad Hossein</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amoshahy, Mohammad Javad</au><au>Shamsi, Mousa</au><au>Sedaaghi, Mohammad Hossein</au><au>Deng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-08-25</date><risdate>2016</risdate><volume>11</volume><issue>8</issue><spage>e0161558</spage><epage>e0161558</epage><pages>e0161558-e0161558</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27560945</pmid><doi>10.1371/journal.pone.0161558</doi><tpages>e0161558</tpages><orcidid>https://orcid.org/0000-0002-2257-7607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-08, Vol.11 (8), p.e0161558-e0161558 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1814156257 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Analysis Artificial Intelligence Biology and Life Sciences Computational Biology Computer and Information Sciences Computer Simulation Electrical engineering Evolutionary algorithms Exploitation Exploration Inertia International conferences Models, Statistical Optimization Optimization algorithms Optimization theory Particle swarm optimization Physical Sciences Problems Research and Analysis Methods S parameters Social Sciences Software Statistical analysis Strategy Swarm intelligence Time Factors |
title | A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Flexible%20Inertia%20Weight%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=PloS%20one&rft.au=Amoshahy,%20Mohammad%20Javad&rft.date=2016-08-25&rft.volume=11&rft.issue=8&rft.spage=e0161558&rft.epage=e0161558&rft.pages=e0161558-e0161558&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0161558&rft_dat=%3Cgale_plos_%3EA461579373%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c725t-86dfe4c58703c6dbf3b5de65cb8cba06c5e22e37620d0aa2a55418d3194cfc9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1814156257&rft_id=info:pmid/27560945&rft_galeid=A461579373&rfr_iscdi=true |