Loading…

Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply

Regional changes in blood flow are initiated within neural tissue to help fuel local differences in neural activity. Classically, this response was thought to arise only in larger arterioles and venules. However, recently, it has been proposed that a) the smallest vessels of the circulation make a c...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-09, Vol.11 (9), p.e0162621-e0162621
Main Authors: Duan, Angelina, Bedggood, Phillip A, Bui, Bang V, Metha, Andrew B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Regional changes in blood flow are initiated within neural tissue to help fuel local differences in neural activity. Classically, this response was thought to arise only in larger arterioles and venules. However, recently, it has been proposed that a) the smallest vessels of the circulation make a comparable contribution, and b) the response should be localised intermittently along such vessels, due to the known distribution of contractile mural cells. To assess these hypotheses in human neural tissue in vivo, we imaged the retinal microvasculature (diameters 3-28 μm) non-invasively, using adaptive optics, before and after delivery of focal (360 μm) patches of flickering visible light. Our results demonstrated a definite average response in 35% of all vessel segments analysed. In these responding vessels, the magnitude of proportional dilation (mean ± SEM for pre-capillary arterioles 13 ± 5%, capillaries 31 ± 8%, and post-capillary venules 10 ± 3%) is generally far greater than the magnitudes we and others have measured in the larger retinal vessels, supporting proposition a) above. The dilations observed in venules were unexpected based on previous animal work, and may be attributed either to differences in stimulus or species. Response heterogeneity across the network was high; responses were also heterogeneous along individual vessels (45% of vessel segments showed demonstrable locality in their response). These observations support proposition b) above. We also observed a definite average constriction across 7% of vessel segments (mean ± SEM constriction for capillaries -16 ± 3.2%, and post-capillary venules -18 ± 12%), which paints a picture of dynamic redistribution of flow throughout the smallest vessel networks in the retina in response to local, stimulus-driven metabolic demand.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0162621