Loading…
Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment
Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity...
Saved in:
Published in: | PLoS biology 2016-09, Vol.14 (9), p.e1002537 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c794t-f720a0583329fc2f6d61254afbe6edaa1f17792b5708227de0e60a2ffe280e293 |
---|---|
cites | cdi_FETCH-LOGICAL-c794t-f720a0583329fc2f6d61254afbe6edaa1f17792b5708227de0e60a2ffe280e293 |
container_end_page | |
container_issue | 9 |
container_start_page | e1002537 |
container_title | PLoS biology |
container_volume | 14 |
creator | Tamori, Yoichiro Suzuki, Emiko Deng, Wu-Min |
description | Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this "tumor hotspot" where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the "tumor coldspot" nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism. |
doi_str_mv | 10.1371/journal.pbio.1002537 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1829444259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476858358</galeid><doaj_id>oai_doaj_org_article_8da3067896494571acf6db140dbd5715</doaj_id><sourcerecordid>A476858358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c794t-f720a0583329fc2f6d61254afbe6edaa1f17792b5708227de0e60a2ffe280e293</originalsourceid><addsrcrecordid>eNqVksFu1DAQhiMEomXhDRBE4gISu9iOHTsXpKoqdKXCSmXhajnJOPUqsbd2UsHb47Bp1aAeQHEUZ_LN75nJnyQvMVrhjOMPOzd4q9rVvjRuhREiLOOPkmPMKFtyIdjje_uj5FkIu8iQgoinyRHhTFBO6HFyebY3_RW0RrXpduicD-nGm8ZY1UNq7CGWnrs-7OP9PlXp1oQwwHJte29sMFX6xVTegb0x3tkObP88eaJVG-DF9Fwk3z-dbU_Plxebz-vTk4tlxQvaLzUnSCEmsowUuiI6r3NMGFW6hBxqpbDGnBekZBwJQngNCHKkiNZABAJSZIvk9UF337ogp3EEiQUpKKWEjcT6QNRO7eTem075X9IpI_8EnG-k8r2pWpCiVhnKuShyWlDGsapiQSWmqC7r-Mqi1sfptKHsoK5io161M9H5F2uuZONuJENIcDoW83YS8O56gNDLzoQK2lZZcMNYd8azDPGCR_TNX-jD3U1Uo2IDxmoXz61GUXlCeS7iaONaJKsHqHjV0JnKWdAmxmcJ72YJkenhZ9-oIQS5_nb5H-zXf2c3P-YsPbDRWSF40HdzxkiO7r8diBzdLyf3x7RX9__RXdKt3bPfdof--w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1829444259</pqid></control><display><type>article</type><title>Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tamori, Yoichiro ; Suzuki, Emiko ; Deng, Wu-Min</creator><contributor>Edgar, Bruce A</contributor><creatorcontrib>Tamori, Yoichiro ; Suzuki, Emiko ; Deng, Wu-Min ; Edgar, Bruce A</creatorcontrib><description>Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this "tumor hotspot" where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the "tumor coldspot" nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002537</identifier><identifier>PMID: 27584724</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Cancer cells ; Carcinogenesis ; Cell interaction ; Cloning ; Drosophila ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Epithelial cells ; Epithelial Cells - physiology ; Funding ; Gene Knockdown Techniques ; Genes ; Genetics ; Health aspects ; Imaginal Discs - pathology ; Insects ; Janus Kinases - metabolism ; Kinases ; Life sciences ; Medicine and Health Sciences ; Microtubules - metabolism ; Neoplasms, Glandular and Epithelial - pathology ; Organ Specificity ; Physical Sciences ; Protein Transport ; Research and Analysis Methods ; RNA Interference ; Rodents ; Signal Transduction ; STAT Transcription Factors - metabolism ; Studies ; Transcription Factors - metabolism ; Tumor Microenvironment ; Tumor necrosis factor-TNF ; Tumorigenesis ; Tumors</subject><ispartof>PLoS biology, 2016-09, Vol.14 (9), p.e1002537</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tamori Y, Suzuki E, Deng W-M (2016) Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment. PLoS Biol 14(9): e1002537. doi:10.1371/journal.pbio.1002537</rights><rights>2016 Tamori et al 2016 Tamori et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tamori Y, Suzuki E, Deng W-M (2016) Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment. PLoS Biol 14(9): e1002537. doi:10.1371/journal.pbio.1002537</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c794t-f720a0583329fc2f6d61254afbe6edaa1f17792b5708227de0e60a2ffe280e293</citedby><cites>FETCH-LOGICAL-c794t-f720a0583329fc2f6d61254afbe6edaa1f17792b5708227de0e60a2ffe280e293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1829444259/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1829444259?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27584724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Edgar, Bruce A</contributor><creatorcontrib>Tamori, Yoichiro</creatorcontrib><creatorcontrib>Suzuki, Emiko</creatorcontrib><creatorcontrib>Deng, Wu-Min</creatorcontrib><title>Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this "tumor hotspot" where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the "tumor coldspot" nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Cancer cells</subject><subject>Carcinogenesis</subject><subject>Cell interaction</subject><subject>Cloning</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - physiology</subject><subject>Funding</subject><subject>Gene Knockdown Techniques</subject><subject>Genes</subject><subject>Genetics</subject><subject>Health aspects</subject><subject>Imaginal Discs - pathology</subject><subject>Insects</subject><subject>Janus Kinases - metabolism</subject><subject>Kinases</subject><subject>Life sciences</subject><subject>Medicine and Health Sciences</subject><subject>Microtubules - metabolism</subject><subject>Neoplasms, Glandular and Epithelial - pathology</subject><subject>Organ Specificity</subject><subject>Physical Sciences</subject><subject>Protein Transport</subject><subject>Research and Analysis Methods</subject><subject>RNA Interference</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>STAT Transcription Factors - metabolism</subject><subject>Studies</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Microenvironment</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVksFu1DAQhiMEomXhDRBE4gISu9iOHTsXpKoqdKXCSmXhajnJOPUqsbd2UsHb47Bp1aAeQHEUZ_LN75nJnyQvMVrhjOMPOzd4q9rVvjRuhREiLOOPkmPMKFtyIdjje_uj5FkIu8iQgoinyRHhTFBO6HFyebY3_RW0RrXpduicD-nGm8ZY1UNq7CGWnrs-7OP9PlXp1oQwwHJte29sMFX6xVTegb0x3tkObP88eaJVG-DF9Fwk3z-dbU_Plxebz-vTk4tlxQvaLzUnSCEmsowUuiI6r3NMGFW6hBxqpbDGnBekZBwJQngNCHKkiNZABAJSZIvk9UF337ogp3EEiQUpKKWEjcT6QNRO7eTem075X9IpI_8EnG-k8r2pWpCiVhnKuShyWlDGsapiQSWmqC7r-Mqi1sfptKHsoK5io161M9H5F2uuZONuJENIcDoW83YS8O56gNDLzoQK2lZZcMNYd8azDPGCR_TNX-jD3U1Uo2IDxmoXz61GUXlCeS7iaONaJKsHqHjV0JnKWdAmxmcJ72YJkenhZ9-oIQS5_nb5H-zXf2c3P-YsPbDRWSF40HdzxkiO7r8diBzdLyf3x7RX9__RXdKt3bPfdof--w</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Tamori, Yoichiro</creator><creator>Suzuki, Emiko</creator><creator>Deng, Wu-Min</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>201609</creationdate><title>Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment</title><author>Tamori, Yoichiro ; Suzuki, Emiko ; Deng, Wu-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c794t-f720a0583329fc2f6d61254afbe6edaa1f17792b5708227de0e60a2ffe280e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Cancer cells</topic><topic>Carcinogenesis</topic><topic>Cell interaction</topic><topic>Cloning</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - physiology</topic><topic>Funding</topic><topic>Gene Knockdown Techniques</topic><topic>Genes</topic><topic>Genetics</topic><topic>Health aspects</topic><topic>Imaginal Discs - pathology</topic><topic>Insects</topic><topic>Janus Kinases - metabolism</topic><topic>Kinases</topic><topic>Life sciences</topic><topic>Medicine and Health Sciences</topic><topic>Microtubules - metabolism</topic><topic>Neoplasms, Glandular and Epithelial - pathology</topic><topic>Organ Specificity</topic><topic>Physical Sciences</topic><topic>Protein Transport</topic><topic>Research and Analysis Methods</topic><topic>RNA Interference</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>STAT Transcription Factors - metabolism</topic><topic>Studies</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Microenvironment</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamori, Yoichiro</creatorcontrib><creatorcontrib>Suzuki, Emiko</creatorcontrib><creatorcontrib>Deng, Wu-Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamori, Yoichiro</au><au>Suzuki, Emiko</au><au>Deng, Wu-Min</au><au>Edgar, Bruce A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2016-09</date><risdate>2016</risdate><volume>14</volume><issue>9</issue><spage>e1002537</spage><pages>e1002537-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this "tumor hotspot" where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the "tumor coldspot" nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27584724</pmid><doi>10.1371/journal.pbio.1002537</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2016-09, Vol.14 (9), p.e1002537 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1829444259 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Biology and Life Sciences Cancer cells Carcinogenesis Cell interaction Cloning Drosophila Drosophila melanogaster Drosophila Proteins - genetics Drosophila Proteins - metabolism Epithelial cells Epithelial Cells - physiology Funding Gene Knockdown Techniques Genes Genetics Health aspects Imaginal Discs - pathology Insects Janus Kinases - metabolism Kinases Life sciences Medicine and Health Sciences Microtubules - metabolism Neoplasms, Glandular and Epithelial - pathology Organ Specificity Physical Sciences Protein Transport Research and Analysis Methods RNA Interference Rodents Signal Transduction STAT Transcription Factors - metabolism Studies Transcription Factors - metabolism Tumor Microenvironment Tumor necrosis factor-TNF Tumorigenesis Tumors |
title | Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epithelial%20Tumors%20Originate%20in%20Tumor%20Hotspots,%20a%20Tissue-Intrinsic%20Microenvironment&rft.jtitle=PLoS%20biology&rft.au=Tamori,%20Yoichiro&rft.date=2016-09&rft.volume=14&rft.issue=9&rft.spage=e1002537&rft.pages=e1002537-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002537&rft_dat=%3Cgale_plos_%3EA476858358%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c794t-f720a0583329fc2f6d61254afbe6edaa1f17792b5708227de0e60a2ffe280e293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1829444259&rft_id=info:pmid/27584724&rft_galeid=A476858358&rfr_iscdi=true |