Loading…
Potential Use of BEST® Sediment Trap in Splash - Saltation Transport Process by Simultaneous Wind and Rain Tests
The research on wind-driven rain (WDR) transport process of the splash-saltation has increased over the last twenty years as wind tunnel experimental studies provide new insights into the mechanisms of simultaneous wind and rain (WDR) transport. The present study was conducted to investigate the eff...
Saved in:
Published in: | PloS one 2016-11, Vol.11 (11), p.e0166924-e0166924 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The research on wind-driven rain (WDR) transport process of the splash-saltation has increased over the last twenty years as wind tunnel experimental studies provide new insights into the mechanisms of simultaneous wind and rain (WDR) transport. The present study was conducted to investigate the efficiency of the BEST® sediment traps in catching the sand particles transported through the splash-saltation process under WDR conditions. Experiments were conducted in a wind tunnel rainfall simulator facility with water sprayed through sprinkler nozzles and free-flowing wind at different velocities to simulate the WDR conditions. Not only for vertical sediment distribution, but a series of experimental tests for horizontal distribution of sediments was also performed using BEST® collectors to obtain the actual total sediment mass flow by the splash-saltation in the center of the wind tunnel test section. Total mass transport (kg m-2) were estimated by analytically integrating the exponential functional relationship using the measured sediment amounts at the set trap heights for every run. Results revealed the integrated efficiency of the BEST® traps at 6, 9, 12 and 15 m s-1 wind velocities under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities were, respectively, 83, 106, 105, and 102%. Results as well showed that the efficiencies of BEST® did not change much as compared with those under rainless wind condition. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0166924 |