Loading…
The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis
The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously fo...
Saved in:
Published in: | PloS one 2016-12, Vol.11 (12), p.e0167910-e0167910 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3 |
container_end_page | e0167910 |
container_issue | 12 |
container_start_page | e0167910 |
container_title | PloS one |
container_volume | 11 |
creator | Laker, Rhianna C Taddeo, Evan P Akhtar, Yasir N Zhang, Mei Hoehn, Kyle L Yan, Zhen |
description | The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD. |
doi_str_mv | 10.1371/journal.pone.0167910 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1851682966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A474759838</galeid><doaj_id>oai_doaj_org_article_18930712b92d4218a2d936d2c0b62211</doaj_id><sourcerecordid>A474759838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</originalsourceid><addsrcrecordid>eNqNk0FvFCEUxydGY2v1GxglMTF62BWYGQYuJs1a7SZt2rSrV8IAs8OGHVZgTHvzo8t2p82O6aHhAHn8_v8HD16WvUVwivIKfVm53nfCTjeu01OISMUQfJYdIpbjCcEwf763PshehbCCsMwpIS-zA0zTmhXkMPu7aDU4N9HJ1nXKG2HBpfZrLWpjTbwFCy-6YKJxHbh0XoMrveytiM6D2a20btMmrAPfwMlNa2oTA1iYEHo9ud5oaRojwcx10TsLXAPOdRS1syl46tbahSiCCa-zF42wQb8Z5qPs5_eTxex0cnbxYz47PpvIdLE4qTFUSJUFxJVSWMuSsELguoaFaghTTNQIyqbGjGAhaEUxrRRRjaQMSyRpnR9l73e-G-sCH4oXOKIlIjTJSCLmO0I5seIbb9bC33InDL8LOL_kwkcjrU4qlsMK4ZphVWBEBVYsJwpLWBOMEUpeX4dsfb3WSupUBGFHpuOdzrR86f7wElUMEpgMPg0G3v3udYh8bYLU1opOu_7u3KyoyqLIn4LiqmJ5QRP64T_08UIM1FKku5qucemIcmvKj4sqZWU033pNH6HSUHptZPqUjUnxkeDzSJCYqG_iUvQh8Pn11dPZi19j9uMe22phYxuc7befNozBYgdK70Lwunl4DwT5tqfuq8G3PcWHnkqyd_tv-SC6b6L8H0EpHPo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851682966</pqid></control><display><type>article</type><title>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Laker, Rhianna C ; Taddeo, Evan P ; Akhtar, Yasir N ; Zhang, Mei ; Hoehn, Kyle L ; Yan, Zhen</creator><contributor>Zazueta, Cecilia</contributor><creatorcontrib>Laker, Rhianna C ; Taddeo, Evan P ; Akhtar, Yasir N ; Zhang, Mei ; Hoehn, Kyle L ; Yan, Zhen ; Zazueta, Cecilia</creatorcontrib><description>The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0167910</identifier><identifier>PMID: 28005946</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Biology and Life Sciences ; Body weight ; Body weight gain ; Calcium ; Calcium - metabolism ; Cyclophilin ; Cyclophilins - physiology ; Diet ; Genetic aspects ; Glucose ; Glucose metabolism ; Glucose tolerance ; Health aspects ; High fat diet ; Homeostasis ; Homeostasis - physiology ; Insulin resistance ; Intolerance ; Kinases ; Liver ; Medicine and Health Sciences ; Membrane permeability ; Metabolism ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria, Heart - metabolism ; Mitochondria, Liver - metabolism ; Mitochondrial DNA ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Permeability Transition Pore ; Muscles ; Obesity ; Pathogenesis ; Peptidyl-Prolyl Isomerase F ; Permeability ; Physical Sciences ; Physiological aspects ; Pyruvic acid ; Retention capacity ; Rodents ; Skeletal muscle</subject><ispartof>PloS one, 2016-12, Vol.11 (12), p.e0167910-e0167910</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Laker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Laker et al 2016 Laker et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</citedby><cites>FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1851682966/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1851682966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28005946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zazueta, Cecilia</contributor><creatorcontrib>Laker, Rhianna C</creatorcontrib><creatorcontrib>Taddeo, Evan P</creatorcontrib><creatorcontrib>Akhtar, Yasir N</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Hoehn, Kyle L</creatorcontrib><creatorcontrib>Yan, Zhen</creatorcontrib><title>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Body weight</subject><subject>Body weight gain</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cyclophilin</subject><subject>Cyclophilins - physiology</subject><subject>Diet</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Health aspects</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Insulin resistance</subject><subject>Intolerance</subject><subject>Kinases</subject><subject>Liver</subject><subject>Medicine and Health Sciences</subject><subject>Membrane permeability</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Permeability Transition Pore</subject><subject>Muscles</subject><subject>Obesity</subject><subject>Pathogenesis</subject><subject>Peptidyl-Prolyl Isomerase F</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Pyruvic acid</subject><subject>Retention capacity</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0FvFCEUxydGY2v1GxglMTF62BWYGQYuJs1a7SZt2rSrV8IAs8OGHVZgTHvzo8t2p82O6aHhAHn8_v8HD16WvUVwivIKfVm53nfCTjeu01OISMUQfJYdIpbjCcEwf763PshehbCCsMwpIS-zA0zTmhXkMPu7aDU4N9HJ1nXKG2HBpfZrLWpjTbwFCy-6YKJxHbh0XoMrveytiM6D2a20btMmrAPfwMlNa2oTA1iYEHo9ud5oaRojwcx10TsLXAPOdRS1syl46tbahSiCCa-zF42wQb8Z5qPs5_eTxex0cnbxYz47PpvIdLE4qTFUSJUFxJVSWMuSsELguoaFaghTTNQIyqbGjGAhaEUxrRRRjaQMSyRpnR9l73e-G-sCH4oXOKIlIjTJSCLmO0I5seIbb9bC33InDL8LOL_kwkcjrU4qlsMK4ZphVWBEBVYsJwpLWBOMEUpeX4dsfb3WSupUBGFHpuOdzrR86f7wElUMEpgMPg0G3v3udYh8bYLU1opOu_7u3KyoyqLIn4LiqmJ5QRP64T_08UIM1FKku5qucemIcmvKj4sqZWU033pNH6HSUHptZPqUjUnxkeDzSJCYqG_iUvQh8Pn11dPZi19j9uMe22phYxuc7befNozBYgdK70Lwunl4DwT5tqfuq8G3PcWHnkqyd_tv-SC6b6L8H0EpHPo</recordid><startdate>20161222</startdate><enddate>20161222</enddate><creator>Laker, Rhianna C</creator><creator>Taddeo, Evan P</creator><creator>Akhtar, Yasir N</creator><creator>Zhang, Mei</creator><creator>Hoehn, Kyle L</creator><creator>Yan, Zhen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161222</creationdate><title>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</title><author>Laker, Rhianna C ; Taddeo, Evan P ; Akhtar, Yasir N ; Zhang, Mei ; Hoehn, Kyle L ; Yan, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Body weight</topic><topic>Body weight gain</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cyclophilin</topic><topic>Cyclophilins - physiology</topic><topic>Diet</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Health aspects</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Insulin resistance</topic><topic>Intolerance</topic><topic>Kinases</topic><topic>Liver</topic><topic>Medicine and Health Sciences</topic><topic>Membrane permeability</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Permeability Transition Pore</topic><topic>Muscles</topic><topic>Obesity</topic><topic>Pathogenesis</topic><topic>Peptidyl-Prolyl Isomerase F</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Pyruvic acid</topic><topic>Retention capacity</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laker, Rhianna C</creatorcontrib><creatorcontrib>Taddeo, Evan P</creatorcontrib><creatorcontrib>Akhtar, Yasir N</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Hoehn, Kyle L</creatorcontrib><creatorcontrib>Yan, Zhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laker, Rhianna C</au><au>Taddeo, Evan P</au><au>Akhtar, Yasir N</au><au>Zhang, Mei</au><au>Hoehn, Kyle L</au><au>Yan, Zhen</au><au>Zazueta, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-12-22</date><risdate>2016</risdate><volume>11</volume><issue>12</issue><spage>e0167910</spage><epage>e0167910</epage><pages>e0167910-e0167910</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28005946</pmid><doi>10.1371/journal.pone.0167910</doi><tpages>e0167910</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-12, Vol.11 (12), p.e0167910-e0167910 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1851682966 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Analysis Animals Biology and Life Sciences Body weight Body weight gain Calcium Calcium - metabolism Cyclophilin Cyclophilins - physiology Diet Genetic aspects Glucose Glucose metabolism Glucose tolerance Health aspects High fat diet Homeostasis Homeostasis - physiology Insulin resistance Intolerance Kinases Liver Medicine and Health Sciences Membrane permeability Metabolism Mice Mice, Knockout Mitochondria Mitochondria, Heart - metabolism Mitochondria, Liver - metabolism Mitochondrial DNA Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Permeability Transition Pore Muscles Obesity Pathogenesis Peptidyl-Prolyl Isomerase F Permeability Physical Sciences Physiological aspects Pyruvic acid Retention capacity Rodents Skeletal muscle |
title | The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mitochondrial%20Permeability%20Transition%20Pore%20Regulator%20Cyclophilin%20D%20Exhibits%20Tissue-Specific%20Control%20of%20Metabolic%20Homeostasis&rft.jtitle=PloS%20one&rft.au=Laker,%20Rhianna%20C&rft.date=2016-12-22&rft.volume=11&rft.issue=12&rft.spage=e0167910&rft.epage=e0167910&rft.pages=e0167910-e0167910&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0167910&rft_dat=%3Cgale_plos_%3EA474759838%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851682966&rft_id=info:pmid/28005946&rft_galeid=A474759838&rfr_iscdi=true |