Loading…

The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis

The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously fo...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2016-12, Vol.11 (12), p.e0167910-e0167910
Main Authors: Laker, Rhianna C, Taddeo, Evan P, Akhtar, Yasir N, Zhang, Mei, Hoehn, Kyle L, Yan, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3
cites cdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3
container_end_page e0167910
container_issue 12
container_start_page e0167910
container_title PloS one
container_volume 11
creator Laker, Rhianna C
Taddeo, Evan P
Akhtar, Yasir N
Zhang, Mei
Hoehn, Kyle L
Yan, Zhen
description The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.
doi_str_mv 10.1371/journal.pone.0167910
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1851682966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A474759838</galeid><doaj_id>oai_doaj_org_article_18930712b92d4218a2d936d2c0b62211</doaj_id><sourcerecordid>A474759838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</originalsourceid><addsrcrecordid>eNqNk0FvFCEUxydGY2v1GxglMTF62BWYGQYuJs1a7SZt2rSrV8IAs8OGHVZgTHvzo8t2p82O6aHhAHn8_v8HD16WvUVwivIKfVm53nfCTjeu01OISMUQfJYdIpbjCcEwf763PshehbCCsMwpIS-zA0zTmhXkMPu7aDU4N9HJ1nXKG2HBpfZrLWpjTbwFCy-6YKJxHbh0XoMrveytiM6D2a20btMmrAPfwMlNa2oTA1iYEHo9ud5oaRojwcx10TsLXAPOdRS1syl46tbahSiCCa-zF42wQb8Z5qPs5_eTxex0cnbxYz47PpvIdLE4qTFUSJUFxJVSWMuSsELguoaFaghTTNQIyqbGjGAhaEUxrRRRjaQMSyRpnR9l73e-G-sCH4oXOKIlIjTJSCLmO0I5seIbb9bC33InDL8LOL_kwkcjrU4qlsMK4ZphVWBEBVYsJwpLWBOMEUpeX4dsfb3WSupUBGFHpuOdzrR86f7wElUMEpgMPg0G3v3udYh8bYLU1opOu_7u3KyoyqLIn4LiqmJ5QRP64T_08UIM1FKku5qucemIcmvKj4sqZWU033pNH6HSUHptZPqUjUnxkeDzSJCYqG_iUvQh8Pn11dPZi19j9uMe22phYxuc7befNozBYgdK70Lwunl4DwT5tqfuq8G3PcWHnkqyd_tv-SC6b6L8H0EpHPo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851682966</pqid></control><display><type>article</type><title>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Laker, Rhianna C ; Taddeo, Evan P ; Akhtar, Yasir N ; Zhang, Mei ; Hoehn, Kyle L ; Yan, Zhen</creator><contributor>Zazueta, Cecilia</contributor><creatorcontrib>Laker, Rhianna C ; Taddeo, Evan P ; Akhtar, Yasir N ; Zhang, Mei ; Hoehn, Kyle L ; Yan, Zhen ; Zazueta, Cecilia</creatorcontrib><description>The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0167910</identifier><identifier>PMID: 28005946</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Biology and Life Sciences ; Body weight ; Body weight gain ; Calcium ; Calcium - metabolism ; Cyclophilin ; Cyclophilins - physiology ; Diet ; Genetic aspects ; Glucose ; Glucose metabolism ; Glucose tolerance ; Health aspects ; High fat diet ; Homeostasis ; Homeostasis - physiology ; Insulin resistance ; Intolerance ; Kinases ; Liver ; Medicine and Health Sciences ; Membrane permeability ; Metabolism ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria, Heart - metabolism ; Mitochondria, Liver - metabolism ; Mitochondrial DNA ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Permeability Transition Pore ; Muscles ; Obesity ; Pathogenesis ; Peptidyl-Prolyl Isomerase F ; Permeability ; Physical Sciences ; Physiological aspects ; Pyruvic acid ; Retention capacity ; Rodents ; Skeletal muscle</subject><ispartof>PloS one, 2016-12, Vol.11 (12), p.e0167910-e0167910</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Laker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Laker et al 2016 Laker et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</citedby><cites>FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1851682966/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1851682966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28005946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zazueta, Cecilia</contributor><creatorcontrib>Laker, Rhianna C</creatorcontrib><creatorcontrib>Taddeo, Evan P</creatorcontrib><creatorcontrib>Akhtar, Yasir N</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Hoehn, Kyle L</creatorcontrib><creatorcontrib>Yan, Zhen</creatorcontrib><title>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Body weight</subject><subject>Body weight gain</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cyclophilin</subject><subject>Cyclophilins - physiology</subject><subject>Diet</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Health aspects</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Insulin resistance</subject><subject>Intolerance</subject><subject>Kinases</subject><subject>Liver</subject><subject>Medicine and Health Sciences</subject><subject>Membrane permeability</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Permeability Transition Pore</subject><subject>Muscles</subject><subject>Obesity</subject><subject>Pathogenesis</subject><subject>Peptidyl-Prolyl Isomerase F</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Pyruvic acid</subject><subject>Retention capacity</subject><subject>Rodents</subject><subject>Skeletal muscle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0FvFCEUxydGY2v1GxglMTF62BWYGQYuJs1a7SZt2rSrV8IAs8OGHVZgTHvzo8t2p82O6aHhAHn8_v8HD16WvUVwivIKfVm53nfCTjeu01OISMUQfJYdIpbjCcEwf763PshehbCCsMwpIS-zA0zTmhXkMPu7aDU4N9HJ1nXKG2HBpfZrLWpjTbwFCy-6YKJxHbh0XoMrveytiM6D2a20btMmrAPfwMlNa2oTA1iYEHo9ud5oaRojwcx10TsLXAPOdRS1syl46tbahSiCCa-zF42wQb8Z5qPs5_eTxex0cnbxYz47PpvIdLE4qTFUSJUFxJVSWMuSsELguoaFaghTTNQIyqbGjGAhaEUxrRRRjaQMSyRpnR9l73e-G-sCH4oXOKIlIjTJSCLmO0I5seIbb9bC33InDL8LOL_kwkcjrU4qlsMK4ZphVWBEBVYsJwpLWBOMEUpeX4dsfb3WSupUBGFHpuOdzrR86f7wElUMEpgMPg0G3v3udYh8bYLU1opOu_7u3KyoyqLIn4LiqmJ5QRP64T_08UIM1FKku5qucemIcmvKj4sqZWU033pNH6HSUHptZPqUjUnxkeDzSJCYqG_iUvQh8Pn11dPZi19j9uMe22phYxuc7befNozBYgdK70Lwunl4DwT5tqfuq8G3PcWHnkqyd_tv-SC6b6L8H0EpHPo</recordid><startdate>20161222</startdate><enddate>20161222</enddate><creator>Laker, Rhianna C</creator><creator>Taddeo, Evan P</creator><creator>Akhtar, Yasir N</creator><creator>Zhang, Mei</creator><creator>Hoehn, Kyle L</creator><creator>Yan, Zhen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161222</creationdate><title>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</title><author>Laker, Rhianna C ; Taddeo, Evan P ; Akhtar, Yasir N ; Zhang, Mei ; Hoehn, Kyle L ; Yan, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Body weight</topic><topic>Body weight gain</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cyclophilin</topic><topic>Cyclophilins - physiology</topic><topic>Diet</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Health aspects</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Insulin resistance</topic><topic>Intolerance</topic><topic>Kinases</topic><topic>Liver</topic><topic>Medicine and Health Sciences</topic><topic>Membrane permeability</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Permeability Transition Pore</topic><topic>Muscles</topic><topic>Obesity</topic><topic>Pathogenesis</topic><topic>Peptidyl-Prolyl Isomerase F</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Pyruvic acid</topic><topic>Retention capacity</topic><topic>Rodents</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laker, Rhianna C</creatorcontrib><creatorcontrib>Taddeo, Evan P</creatorcontrib><creatorcontrib>Akhtar, Yasir N</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Hoehn, Kyle L</creatorcontrib><creatorcontrib>Yan, Zhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laker, Rhianna C</au><au>Taddeo, Evan P</au><au>Akhtar, Yasir N</au><au>Zhang, Mei</au><au>Hoehn, Kyle L</au><au>Yan, Zhen</au><au>Zazueta, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-12-22</date><risdate>2016</risdate><volume>11</volume><issue>12</issue><spage>e0167910</spage><epage>e0167910</epage><pages>e0167910-e0167910</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28005946</pmid><doi>10.1371/journal.pone.0167910</doi><tpages>e0167910</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-12, Vol.11 (12), p.e0167910-e0167910
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1851682966
source Publicly Available Content (ProQuest); PubMed Central
subjects Analysis
Animals
Biology and Life Sciences
Body weight
Body weight gain
Calcium
Calcium - metabolism
Cyclophilin
Cyclophilins - physiology
Diet
Genetic aspects
Glucose
Glucose metabolism
Glucose tolerance
Health aspects
High fat diet
Homeostasis
Homeostasis - physiology
Insulin resistance
Intolerance
Kinases
Liver
Medicine and Health Sciences
Membrane permeability
Metabolism
Mice
Mice, Knockout
Mitochondria
Mitochondria, Heart - metabolism
Mitochondria, Liver - metabolism
Mitochondrial DNA
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Permeability Transition Pore
Muscles
Obesity
Pathogenesis
Peptidyl-Prolyl Isomerase F
Permeability
Physical Sciences
Physiological aspects
Pyruvic acid
Retention capacity
Rodents
Skeletal muscle
title The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mitochondrial%20Permeability%20Transition%20Pore%20Regulator%20Cyclophilin%20D%20Exhibits%20Tissue-Specific%20Control%20of%20Metabolic%20Homeostasis&rft.jtitle=PloS%20one&rft.au=Laker,%20Rhianna%20C&rft.date=2016-12-22&rft.volume=11&rft.issue=12&rft.spage=e0167910&rft.epage=e0167910&rft.pages=e0167910-e0167910&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0167910&rft_dat=%3Cgale_plos_%3EA474759838%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c791t-b20d1d54027dd2ec5694a2bb04df69d9ab10cfb2962aa878287d6dfc892c1c8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851682966&rft_id=info:pmid/28005946&rft_galeid=A474759838&rfr_iscdi=true