Loading…

Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia

Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in c...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-01, Vol.12 (1), p.e0169861-e0169861
Main Authors: Ikebara, Juliane Midori, Takada, Silvia Honda, Cardoso, Débora Sterzeck, Dias, Natália Myuki Moralles, de Campos, Beatriz Crossiol Vicente, Bretherick, Talitha Amanda Sanches, Higa, Guilherme Shigueto Vilar, Ferraz, Mariana Sacrini Ayres, Kihara, Alexandre Hiroaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c725t-e544d4cbe93b2d0060610c02b874210e30a537c5dfef16aeb80b5590c2833b953
cites cdi_FETCH-LOGICAL-c725t-e544d4cbe93b2d0060610c02b874210e30a537c5dfef16aeb80b5590c2833b953
container_end_page e0169861
container_issue 1
container_start_page e0169861
container_title PloS one
container_volume 12
creator Ikebara, Juliane Midori
Takada, Silvia Honda
Cardoso, Débora Sterzeck
Dias, Natália Myuki Moralles
de Campos, Beatriz Crossiol Vicente
Bretherick, Talitha Amanda Sanches
Higa, Guilherme Shigueto Vilar
Ferraz, Mariana Sacrini Ayres
Kihara, Alexandre Hiroaki
description Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.
doi_str_mv 10.1371/journal.pone.0169861
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1857360563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004665</galeid><doaj_id>oai_doaj_org_article_c4d0b08109a54293ba9b3d3d99ed3b32</doaj_id><sourcerecordid>A477004665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-e544d4cbe93b2d0060610c02b874210e30a537c5dfef16aeb80b5590c2833b953</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIArdNd8zcyOUYu1CsbBWb0Mmc2Y3JTsZk4y0N_52M3ZbutKLMgwTkue8J_Oec4riNcFzwkry6dKPodduPvge5pjIupLkSbFPakZnkmL29N56r3gR4yXGglVSPi_2aIVLWlViv_hzMvYmWZ-V0NI7QL5Diz4FbcC50emAjrUzdtygJRgYkg_52EebvEPkkB-K2UWwcVj7_OoE6OJ6AESQ7dFSJ3Rqh8EbvRnGiHSXIKBvkFOlnOyo91dWvyyeddpFeLX9HhQ_Tr5cHJ_Ozs6_Lo6PzmampCLNQHDectNAzRraYiyxJNhg2lQlpwQDw1qw0oi2g45IDU2FGyFqbGjFWFMLdlC8vdEdnI9qa11UpBIlk1hIlonFDdF6famGYDc6XCuvrfq34cNK6ZCscaAMb3GDK4JrLTjNV9J1w1rW1jW0rGE0a33eZhubDbQGJkPdjujuSW_XauV_K0GpwJRngQ9bgeB_jRCT2tg4VUT34Mfp3rJinAtRPQIVZSko5zKj7_5DHzZiS610_lfbd37qhklUHfGyxJhLORk6f4DKTwsba3JLdjbv7wR83AnITIKrtNJjjGrxffl49vznLvv-HrsG7dI6ejdOPR13QX4DmuBjDNDd1YNgNU3UrRtqmii1nagc9uZ-Le-CbkeI_QV3hxoK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857360563</pqid></control><display><type>article</type><title>Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Ikebara, Juliane Midori ; Takada, Silvia Honda ; Cardoso, Débora Sterzeck ; Dias, Natália Myuki Moralles ; de Campos, Beatriz Crossiol Vicente ; Bretherick, Talitha Amanda Sanches ; Higa, Guilherme Shigueto Vilar ; Ferraz, Mariana Sacrini Ayres ; Kihara, Alexandre Hiroaki</creator><contributor>Abe, Keiko</contributor><creatorcontrib>Ikebara, Juliane Midori ; Takada, Silvia Honda ; Cardoso, Débora Sterzeck ; Dias, Natália Myuki Moralles ; de Campos, Beatriz Crossiol Vicente ; Bretherick, Talitha Amanda Sanches ; Higa, Guilherme Shigueto Vilar ; Ferraz, Mariana Sacrini Ayres ; Kihara, Alexandre Hiroaki ; Abe, Keiko</creatorcontrib><description>Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169861</identifier><identifier>PMID: 28072885</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anoxia ; Apoptosis ; Biology and Life Sciences ; Brain ; CA1 Region, Hippocampal - metabolism ; Calcium ; Calcium (intracellular) ; Calcium Signaling ; Cascades ; Caspase ; Caspase-3 ; Cell activation ; Cell death ; Deprivation ; Gangrene ; Gene expression ; Hippocampus ; Hypoxia - metabolism ; Immunofluorescence ; Inositol 1,4,5-trisphosphate receptors ; Inositol 1,4,5-Trisphosphate Receptors - genetics ; Inositol 1,4,5-Trisphosphate Receptors - metabolism ; Inositol phosphates ; Intracellular ; Kinases ; Laboratory animals ; Male ; Medicine and Health Sciences ; Morbidity ; Mortality ; Neonates ; Neurodegeneration ; Neurological complications ; Neurosciences ; Newborn babies ; Nuclei (cytology) ; Nutrient deficiency ; Oxygen ; Physical Sciences ; Physiological aspects ; Premature birth ; Protein Transport ; Public health ; Rats ; Rats, Wistar ; Receptors ; Regulators ; Research and Analysis Methods ; Rodents ; Spatial distribution ; Translocation</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169861-e0169861</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Ikebara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Ikebara et al 2017 Ikebara et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-e544d4cbe93b2d0060610c02b874210e30a537c5dfef16aeb80b5590c2833b953</citedby><cites>FETCH-LOGICAL-c725t-e544d4cbe93b2d0060610c02b874210e30a537c5dfef16aeb80b5590c2833b953</cites><orcidid>0000-0002-4027-7261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1857360563/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1857360563?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28072885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abe, Keiko</contributor><creatorcontrib>Ikebara, Juliane Midori</creatorcontrib><creatorcontrib>Takada, Silvia Honda</creatorcontrib><creatorcontrib>Cardoso, Débora Sterzeck</creatorcontrib><creatorcontrib>Dias, Natália Myuki Moralles</creatorcontrib><creatorcontrib>de Campos, Beatriz Crossiol Vicente</creatorcontrib><creatorcontrib>Bretherick, Talitha Amanda Sanches</creatorcontrib><creatorcontrib>Higa, Guilherme Shigueto Vilar</creatorcontrib><creatorcontrib>Ferraz, Mariana Sacrini Ayres</creatorcontrib><creatorcontrib>Kihara, Alexandre Hiroaki</creatorcontrib><title>Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.</description><subject>Animals</subject><subject>Anoxia</subject><subject>Apoptosis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium Signaling</subject><subject>Cascades</subject><subject>Caspase</subject><subject>Caspase-3</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Deprivation</subject><subject>Gangrene</subject><subject>Gene expression</subject><subject>Hippocampus</subject><subject>Hypoxia - metabolism</subject><subject>Immunofluorescence</subject><subject>Inositol 1,4,5-trisphosphate receptors</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - genetics</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - metabolism</subject><subject>Inositol phosphates</subject><subject>Intracellular</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>Neonates</subject><subject>Neurodegeneration</subject><subject>Neurological complications</subject><subject>Neurosciences</subject><subject>Newborn babies</subject><subject>Nuclei (cytology)</subject><subject>Nutrient deficiency</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Premature birth</subject><subject>Protein Transport</subject><subject>Public health</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors</subject><subject>Regulators</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Spatial distribution</subject><subject>Translocation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIArdNd8zcyOUYu1CsbBWb0Mmc2Y3JTsZk4y0N_52M3ZbutKLMgwTkue8J_Oec4riNcFzwkry6dKPodduPvge5pjIupLkSbFPakZnkmL29N56r3gR4yXGglVSPi_2aIVLWlViv_hzMvYmWZ-V0NI7QL5Diz4FbcC50emAjrUzdtygJRgYkg_52EebvEPkkB-K2UWwcVj7_OoE6OJ6AESQ7dFSJ3Rqh8EbvRnGiHSXIKBvkFOlnOyo91dWvyyeddpFeLX9HhQ_Tr5cHJ_Ozs6_Lo6PzmampCLNQHDectNAzRraYiyxJNhg2lQlpwQDw1qw0oi2g45IDU2FGyFqbGjFWFMLdlC8vdEdnI9qa11UpBIlk1hIlonFDdF6famGYDc6XCuvrfq34cNK6ZCscaAMb3GDK4JrLTjNV9J1w1rW1jW0rGE0a33eZhubDbQGJkPdjujuSW_XauV_K0GpwJRngQ9bgeB_jRCT2tg4VUT34Mfp3rJinAtRPQIVZSko5zKj7_5DHzZiS610_lfbd37qhklUHfGyxJhLORk6f4DKTwsba3JLdjbv7wR83AnITIKrtNJjjGrxffl49vznLvv-HrsG7dI6ejdOPR13QX4DmuBjDNDd1YNgNU3UrRtqmii1nagc9uZ-Le-CbkeI_QV3hxoK</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Ikebara, Juliane Midori</creator><creator>Takada, Silvia Honda</creator><creator>Cardoso, Débora Sterzeck</creator><creator>Dias, Natália Myuki Moralles</creator><creator>de Campos, Beatriz Crossiol Vicente</creator><creator>Bretherick, Talitha Amanda Sanches</creator><creator>Higa, Guilherme Shigueto Vilar</creator><creator>Ferraz, Mariana Sacrini Ayres</creator><creator>Kihara, Alexandre Hiroaki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4027-7261</orcidid></search><sort><creationdate>20170110</creationdate><title>Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia</title><author>Ikebara, Juliane Midori ; Takada, Silvia Honda ; Cardoso, Débora Sterzeck ; Dias, Natália Myuki Moralles ; de Campos, Beatriz Crossiol Vicente ; Bretherick, Talitha Amanda Sanches ; Higa, Guilherme Shigueto Vilar ; Ferraz, Mariana Sacrini Ayres ; Kihara, Alexandre Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-e544d4cbe93b2d0060610c02b874210e30a537c5dfef16aeb80b5590c2833b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Anoxia</topic><topic>Apoptosis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium Signaling</topic><topic>Cascades</topic><topic>Caspase</topic><topic>Caspase-3</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Deprivation</topic><topic>Gangrene</topic><topic>Gene expression</topic><topic>Hippocampus</topic><topic>Hypoxia - metabolism</topic><topic>Immunofluorescence</topic><topic>Inositol 1,4,5-trisphosphate receptors</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - genetics</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - metabolism</topic><topic>Inositol phosphates</topic><topic>Intracellular</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>Neonates</topic><topic>Neurodegeneration</topic><topic>Neurological complications</topic><topic>Neurosciences</topic><topic>Newborn babies</topic><topic>Nuclei (cytology)</topic><topic>Nutrient deficiency</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Premature birth</topic><topic>Protein Transport</topic><topic>Public health</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors</topic><topic>Regulators</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Spatial distribution</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikebara, Juliane Midori</creatorcontrib><creatorcontrib>Takada, Silvia Honda</creatorcontrib><creatorcontrib>Cardoso, Débora Sterzeck</creatorcontrib><creatorcontrib>Dias, Natália Myuki Moralles</creatorcontrib><creatorcontrib>de Campos, Beatriz Crossiol Vicente</creatorcontrib><creatorcontrib>Bretherick, Talitha Amanda Sanches</creatorcontrib><creatorcontrib>Higa, Guilherme Shigueto Vilar</creatorcontrib><creatorcontrib>Ferraz, Mariana Sacrini Ayres</creatorcontrib><creatorcontrib>Kihara, Alexandre Hiroaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikebara, Juliane Midori</au><au>Takada, Silvia Honda</au><au>Cardoso, Débora Sterzeck</au><au>Dias, Natália Myuki Moralles</au><au>de Campos, Beatriz Crossiol Vicente</au><au>Bretherick, Talitha Amanda Sanches</au><au>Higa, Guilherme Shigueto Vilar</au><au>Ferraz, Mariana Sacrini Ayres</au><au>Kihara, Alexandre Hiroaki</au><au>Abe, Keiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169861</spage><epage>e0169861</epage><pages>e0169861-e0169861</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28072885</pmid><doi>10.1371/journal.pone.0169861</doi><tpages>e0169861</tpages><orcidid>https://orcid.org/0000-0002-4027-7261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-01, Vol.12 (1), p.e0169861-e0169861
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1857360563
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Animals
Anoxia
Apoptosis
Biology and Life Sciences
Brain
CA1 Region, Hippocampal - metabolism
Calcium
Calcium (intracellular)
Calcium Signaling
Cascades
Caspase
Caspase-3
Cell activation
Cell death
Deprivation
Gangrene
Gene expression
Hippocampus
Hypoxia - metabolism
Immunofluorescence
Inositol 1,4,5-trisphosphate receptors
Inositol 1,4,5-Trisphosphate Receptors - genetics
Inositol 1,4,5-Trisphosphate Receptors - metabolism
Inositol phosphates
Intracellular
Kinases
Laboratory animals
Male
Medicine and Health Sciences
Morbidity
Mortality
Neonates
Neurodegeneration
Neurological complications
Neurosciences
Newborn babies
Nuclei (cytology)
Nutrient deficiency
Oxygen
Physical Sciences
Physiological aspects
Premature birth
Protein Transport
Public health
Rats
Rats, Wistar
Receptors
Regulators
Research and Analysis Methods
Rodents
Spatial distribution
Translocation
title Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Role%20of%20Intracellular%20Calcium%20Receptor%20Inositol%201,4,5-Trisphosphate%20Type%201%20in%20Rat%20Hippocampus%20after%20Neonatal%20Anoxia&rft.jtitle=PloS%20one&rft.au=Ikebara,%20Juliane%20Midori&rft.date=2017-01-10&rft.volume=12&rft.issue=1&rft.spage=e0169861&rft.epage=e0169861&rft.pages=e0169861-e0169861&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169861&rft_dat=%3Cgale_plos_%3EA477004665%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c725t-e544d4cbe93b2d0060610c02b874210e30a537c5dfef16aeb80b5590c2833b953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1857360563&rft_id=info:pmid/28072885&rft_galeid=A477004665&rfr_iscdi=true