Loading…
D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function
The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of fo...
Saved in:
Published in: | PloS one 2017-01, Vol.12 (1), p.e0169920 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3 |
container_end_page | |
container_issue | 1 |
container_start_page | e0169920 |
container_title | PloS one |
container_volume | 12 |
creator | Sonderegger, Christoph Fizil, Ádám Burtscher, Laura Hajdu, Dorottya Muñoz, Alberto Gáspári, Zoltán Read, Nick D Batta, Gyula Marx, Florentine |
description | The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. |
doi_str_mv | 10.1371/journal.pone.0169920 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1857360651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004701</galeid><doaj_id>oai_doaj_org_article_3da52bb094d840ae87065bc75f0b73bf</doaj_id><sourcerecordid>A477004701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggsISGQ1mLHduxwgVR1FCoNNq0bt5bjOI2r1C6xM7G34JFx1m5q0C6mXMQ-_s5v6_znJMlrBMcIM_Rp5brWyma8cVaPIcryPIVPkkOU43SUpRA_3VsfJC-8X0FIMc-y58lByiFLeUoOk78nKF-AH12QwTgLXAVCrcH0dmfUMZje-KCN1aMLo2pw3rp-B84ns8_gp7vWDZhbb5Z18MDY4MA8Lhah7VToWtmAkxsr10b5Y3BZ63YdI1e2ck1p7BJIW4KJDabq7DIezDqr-ktfJs8q2Xj9avc_Sq5mXy-n30enZ9_m08npSLGUhhErmOaVLCQmEJFMVxxJhEssSYqgzDGTjFcEVbmmBWYlJJxTjHghGVGIFhofJW-3upvGebErpheIU4YzmFEUifmWKJ1ciU1r1rK9EU4acRtw7VLINhjVaIFLSdOigDkpOYFScxYVCsVoBQuGiypqfdnd1hVrXSptQ6zPQHR4Yk0tlu5a0DQlec6iwIedQOt-d9oHsTZe6aaRVruuf3fGcTSVZY9AKWMU0jyP6Lv_0IcLsaOiT1qY6GB8oupFxYQwBiFhsKfGD1DxK3VsgdiklYnxQcLHQUJkgv4TlrLzXswXF49nz34N2fd7bK1lE2rvmq7vLj8EyRZUrfO-1dW9HwiKfsbuqiH6GRO7GYtpb_a9vE-6Gyr8D8GbIIk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857360651</pqid></control><display><type>article</type><title>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Sonderegger, Christoph ; Fizil, Ádám ; Burtscher, Laura ; Hajdu, Dorottya ; Muñoz, Alberto ; Gáspári, Zoltán ; Read, Nick D ; Batta, Gyula ; Marx, Florentine</creator><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Sonderegger, Christoph ; Fizil, Ádám ; Burtscher, Laura ; Hajdu, Dorottya ; Muñoz, Alberto ; Gáspári, Zoltán ; Read, Nick D ; Batta, Gyula ; Marx, Florentine ; Permyakov, Eugene A.</creatorcontrib><description>The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169920</identifier><identifier>PMID: 28072824</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Amino Acid Motifs ; Amino acids ; Analysis ; Antifungal activity ; Antifungal agents ; Antifungal Agents - chemistry ; Antifungal Agents - toxicity ; Ascomycetes ; Ascomycota ; Aspartic acid ; Aspergillus fumigatus ; Aspergillus nidulans ; Binding Sites ; Biology and Life Sciences ; Calcium (intracellular) ; Calcium - metabolism ; Cations ; Cell culture ; Charge distribution ; Cysteine ; Cysteine - chemistry ; Fungal infections ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - toxicity ; Fungicides ; Gene mutation ; Homeostasis ; Internalization ; Kinases ; Medicine and Health Sciences ; Mode of action ; Molecular biology ; Molecular Dynamics Simulation ; Mutation ; Mutation, Missense ; Neurospora crassa ; Opportunist infection ; Organic chemistry ; Penicillium chrysogenum ; Penicillium chrysogenum - genetics ; Penicillium chrysogenum - metabolism ; Pharmaceutical industry ; Physical Sciences ; Platelet-activating factor ; Protein Binding ; Protein Denaturation ; Proteins ; Research and Analysis Methods ; Serine ; Surface charge ; Toxicity</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169920</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Sonderegger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Sonderegger et al 2017 Sonderegger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</citedby><cites>FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</cites><orcidid>0000-0002-8408-1842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1857360651/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1857360651?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28072824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Sonderegger, Christoph</creatorcontrib><creatorcontrib>Fizil, Ádám</creatorcontrib><creatorcontrib>Burtscher, Laura</creatorcontrib><creatorcontrib>Hajdu, Dorottya</creatorcontrib><creatorcontrib>Muñoz, Alberto</creatorcontrib><creatorcontrib>Gáspári, Zoltán</creatorcontrib><creatorcontrib>Read, Nick D</creatorcontrib><creatorcontrib>Batta, Gyula</creatorcontrib><creatorcontrib>Marx, Florentine</creatorcontrib><title>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.</description><subject>Acids</subject><subject>Amino Acid Motifs</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Antifungal activity</subject><subject>Antifungal agents</subject><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - toxicity</subject><subject>Ascomycetes</subject><subject>Ascomycota</subject><subject>Aspartic acid</subject><subject>Aspergillus fumigatus</subject><subject>Aspergillus nidulans</subject><subject>Binding Sites</subject><subject>Biology and Life Sciences</subject><subject>Calcium (intracellular)</subject><subject>Calcium - metabolism</subject><subject>Cations</subject><subject>Cell culture</subject><subject>Charge distribution</subject><subject>Cysteine</subject><subject>Cysteine - chemistry</subject><subject>Fungal infections</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - toxicity</subject><subject>Fungicides</subject><subject>Gene mutation</subject><subject>Homeostasis</subject><subject>Internalization</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Mode of action</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Neurospora crassa</subject><subject>Opportunist infection</subject><subject>Organic chemistry</subject><subject>Penicillium chrysogenum</subject><subject>Penicillium chrysogenum - genetics</subject><subject>Penicillium chrysogenum - metabolism</subject><subject>Pharmaceutical industry</subject><subject>Physical Sciences</subject><subject>Platelet-activating factor</subject><subject>Protein Binding</subject><subject>Protein Denaturation</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Serine</subject><subject>Surface charge</subject><subject>Toxicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggsISGQ1mLHduxwgVR1FCoNNq0bt5bjOI2r1C6xM7G34JFx1m5q0C6mXMQ-_s5v6_znJMlrBMcIM_Rp5brWyma8cVaPIcryPIVPkkOU43SUpRA_3VsfJC-8X0FIMc-y58lByiFLeUoOk78nKF-AH12QwTgLXAVCrcH0dmfUMZje-KCN1aMLo2pw3rp-B84ns8_gp7vWDZhbb5Z18MDY4MA8Lhah7VToWtmAkxsr10b5Y3BZ63YdI1e2ck1p7BJIW4KJDabq7DIezDqr-ktfJs8q2Xj9avc_Sq5mXy-n30enZ9_m08npSLGUhhErmOaVLCQmEJFMVxxJhEssSYqgzDGTjFcEVbmmBWYlJJxTjHghGVGIFhofJW-3upvGebErpheIU4YzmFEUifmWKJ1ciU1r1rK9EU4acRtw7VLINhjVaIFLSdOigDkpOYFScxYVCsVoBQuGiypqfdnd1hVrXSptQ6zPQHR4Yk0tlu5a0DQlec6iwIedQOt-d9oHsTZe6aaRVruuf3fGcTSVZY9AKWMU0jyP6Lv_0IcLsaOiT1qY6GB8oupFxYQwBiFhsKfGD1DxK3VsgdiklYnxQcLHQUJkgv4TlrLzXswXF49nz34N2fd7bK1lE2rvmq7vLj8EyRZUrfO-1dW9HwiKfsbuqiH6GRO7GYtpb_a9vE-6Gyr8D8GbIIk</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Sonderegger, Christoph</creator><creator>Fizil, Ádám</creator><creator>Burtscher, Laura</creator><creator>Hajdu, Dorottya</creator><creator>Muñoz, Alberto</creator><creator>Gáspári, Zoltán</creator><creator>Read, Nick D</creator><creator>Batta, Gyula</creator><creator>Marx, Florentine</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8408-1842</orcidid></search><sort><creationdate>20170110</creationdate><title>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</title><author>Sonderegger, Christoph ; Fizil, Ádám ; Burtscher, Laura ; Hajdu, Dorottya ; Muñoz, Alberto ; Gáspári, Zoltán ; Read, Nick D ; Batta, Gyula ; Marx, Florentine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Amino Acid Motifs</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Antifungal activity</topic><topic>Antifungal agents</topic><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - toxicity</topic><topic>Ascomycetes</topic><topic>Ascomycota</topic><topic>Aspartic acid</topic><topic>Aspergillus fumigatus</topic><topic>Aspergillus nidulans</topic><topic>Binding Sites</topic><topic>Biology and Life Sciences</topic><topic>Calcium (intracellular)</topic><topic>Calcium - metabolism</topic><topic>Cations</topic><topic>Cell culture</topic><topic>Charge distribution</topic><topic>Cysteine</topic><topic>Cysteine - chemistry</topic><topic>Fungal infections</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - toxicity</topic><topic>Fungicides</topic><topic>Gene mutation</topic><topic>Homeostasis</topic><topic>Internalization</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Mode of action</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Neurospora crassa</topic><topic>Opportunist infection</topic><topic>Organic chemistry</topic><topic>Penicillium chrysogenum</topic><topic>Penicillium chrysogenum - genetics</topic><topic>Penicillium chrysogenum - metabolism</topic><topic>Pharmaceutical industry</topic><topic>Physical Sciences</topic><topic>Platelet-activating factor</topic><topic>Protein Binding</topic><topic>Protein Denaturation</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Serine</topic><topic>Surface charge</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonderegger, Christoph</creatorcontrib><creatorcontrib>Fizil, Ádám</creatorcontrib><creatorcontrib>Burtscher, Laura</creatorcontrib><creatorcontrib>Hajdu, Dorottya</creatorcontrib><creatorcontrib>Muñoz, Alberto</creatorcontrib><creatorcontrib>Gáspári, Zoltán</creatorcontrib><creatorcontrib>Read, Nick D</creatorcontrib><creatorcontrib>Batta, Gyula</creatorcontrib><creatorcontrib>Marx, Florentine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonderegger, Christoph</au><au>Fizil, Ádám</au><au>Burtscher, Laura</au><au>Hajdu, Dorottya</au><au>Muñoz, Alberto</au><au>Gáspári, Zoltán</au><au>Read, Nick D</au><au>Batta, Gyula</au><au>Marx, Florentine</au><au>Permyakov, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169920</spage><pages>e0169920-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28072824</pmid><doi>10.1371/journal.pone.0169920</doi><tpages>e0169920</tpages><orcidid>https://orcid.org/0000-0002-8408-1842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0169920 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1857360651 |
source | PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Acids Amino Acid Motifs Amino acids Analysis Antifungal activity Antifungal agents Antifungal Agents - chemistry Antifungal Agents - toxicity Ascomycetes Ascomycota Aspartic acid Aspergillus fumigatus Aspergillus nidulans Binding Sites Biology and Life Sciences Calcium (intracellular) Calcium - metabolism Cations Cell culture Charge distribution Cysteine Cysteine - chemistry Fungal infections Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - toxicity Fungicides Gene mutation Homeostasis Internalization Kinases Medicine and Health Sciences Mode of action Molecular biology Molecular Dynamics Simulation Mutation Mutation, Missense Neurospora crassa Opportunist infection Organic chemistry Penicillium chrysogenum Penicillium chrysogenum - genetics Penicillium chrysogenum - metabolism Pharmaceutical industry Physical Sciences Platelet-activating factor Protein Binding Protein Denaturation Proteins Research and Analysis Methods Serine Surface charge Toxicity |
title | D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D19S%20Mutation%20of%20the%20Cationic,%20Cysteine-Rich%20Protein%20PAF:%20Novel%20Insights%20into%20Its%20Structural%20Dynamics,%20Thermal%20Unfolding%20and%20Antifungal%20Function&rft.jtitle=PloS%20one&rft.au=Sonderegger,%20Christoph&rft.date=2017-01-10&rft.volume=12&rft.issue=1&rft.spage=e0169920&rft.pages=e0169920-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169920&rft_dat=%3Cgale_plos_%3EA477004701%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1857360651&rft_id=info:pmid/28072824&rft_galeid=A477004701&rfr_iscdi=true |