Loading…

D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function

The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of fo...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-01, Vol.12 (1), p.e0169920
Main Authors: Sonderegger, Christoph, Fizil, Ádám, Burtscher, Laura, Hajdu, Dorottya, Muñoz, Alberto, Gáspári, Zoltán, Read, Nick D, Batta, Gyula, Marx, Florentine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3
cites cdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3
container_end_page
container_issue 1
container_start_page e0169920
container_title PloS one
container_volume 12
creator Sonderegger, Christoph
Fizil, Ádám
Burtscher, Laura
Hajdu, Dorottya
Muñoz, Alberto
Gáspári, Zoltán
Read, Nick D
Batta, Gyula
Marx, Florentine
description The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.
doi_str_mv 10.1371/journal.pone.0169920
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1857360651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004701</galeid><doaj_id>oai_doaj_org_article_3da52bb094d840ae87065bc75f0b73bf</doaj_id><sourcerecordid>A477004701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggsISGQ1mLHduxwgVR1FCoNNq0bt5bjOI2r1C6xM7G34JFx1m5q0C6mXMQ-_s5v6_znJMlrBMcIM_Rp5brWyma8cVaPIcryPIVPkkOU43SUpRA_3VsfJC-8X0FIMc-y58lByiFLeUoOk78nKF-AH12QwTgLXAVCrcH0dmfUMZje-KCN1aMLo2pw3rp-B84ns8_gp7vWDZhbb5Z18MDY4MA8Lhah7VToWtmAkxsr10b5Y3BZ63YdI1e2ck1p7BJIW4KJDabq7DIezDqr-ktfJs8q2Xj9avc_Sq5mXy-n30enZ9_m08npSLGUhhErmOaVLCQmEJFMVxxJhEssSYqgzDGTjFcEVbmmBWYlJJxTjHghGVGIFhofJW-3upvGebErpheIU4YzmFEUifmWKJ1ciU1r1rK9EU4acRtw7VLINhjVaIFLSdOigDkpOYFScxYVCsVoBQuGiypqfdnd1hVrXSptQ6zPQHR4Yk0tlu5a0DQlec6iwIedQOt-d9oHsTZe6aaRVruuf3fGcTSVZY9AKWMU0jyP6Lv_0IcLsaOiT1qY6GB8oupFxYQwBiFhsKfGD1DxK3VsgdiklYnxQcLHQUJkgv4TlrLzXswXF49nz34N2fd7bK1lE2rvmq7vLj8EyRZUrfO-1dW9HwiKfsbuqiH6GRO7GYtpb_a9vE-6Gyr8D8GbIIk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857360651</pqid></control><display><type>article</type><title>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Sonderegger, Christoph ; Fizil, Ádám ; Burtscher, Laura ; Hajdu, Dorottya ; Muñoz, Alberto ; Gáspári, Zoltán ; Read, Nick D ; Batta, Gyula ; Marx, Florentine</creator><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Sonderegger, Christoph ; Fizil, Ádám ; Burtscher, Laura ; Hajdu, Dorottya ; Muñoz, Alberto ; Gáspári, Zoltán ; Read, Nick D ; Batta, Gyula ; Marx, Florentine ; Permyakov, Eugene A.</creatorcontrib><description>The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169920</identifier><identifier>PMID: 28072824</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Amino Acid Motifs ; Amino acids ; Analysis ; Antifungal activity ; Antifungal agents ; Antifungal Agents - chemistry ; Antifungal Agents - toxicity ; Ascomycetes ; Ascomycota ; Aspartic acid ; Aspergillus fumigatus ; Aspergillus nidulans ; Binding Sites ; Biology and Life Sciences ; Calcium (intracellular) ; Calcium - metabolism ; Cations ; Cell culture ; Charge distribution ; Cysteine ; Cysteine - chemistry ; Fungal infections ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - toxicity ; Fungicides ; Gene mutation ; Homeostasis ; Internalization ; Kinases ; Medicine and Health Sciences ; Mode of action ; Molecular biology ; Molecular Dynamics Simulation ; Mutation ; Mutation, Missense ; Neurospora crassa ; Opportunist infection ; Organic chemistry ; Penicillium chrysogenum ; Penicillium chrysogenum - genetics ; Penicillium chrysogenum - metabolism ; Pharmaceutical industry ; Physical Sciences ; Platelet-activating factor ; Protein Binding ; Protein Denaturation ; Proteins ; Research and Analysis Methods ; Serine ; Surface charge ; Toxicity</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169920</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Sonderegger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Sonderegger et al 2017 Sonderegger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</citedby><cites>FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</cites><orcidid>0000-0002-8408-1842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1857360651/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1857360651?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28072824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Sonderegger, Christoph</creatorcontrib><creatorcontrib>Fizil, Ádám</creatorcontrib><creatorcontrib>Burtscher, Laura</creatorcontrib><creatorcontrib>Hajdu, Dorottya</creatorcontrib><creatorcontrib>Muñoz, Alberto</creatorcontrib><creatorcontrib>Gáspári, Zoltán</creatorcontrib><creatorcontrib>Read, Nick D</creatorcontrib><creatorcontrib>Batta, Gyula</creatorcontrib><creatorcontrib>Marx, Florentine</creatorcontrib><title>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.</description><subject>Acids</subject><subject>Amino Acid Motifs</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Antifungal activity</subject><subject>Antifungal agents</subject><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - toxicity</subject><subject>Ascomycetes</subject><subject>Ascomycota</subject><subject>Aspartic acid</subject><subject>Aspergillus fumigatus</subject><subject>Aspergillus nidulans</subject><subject>Binding Sites</subject><subject>Biology and Life Sciences</subject><subject>Calcium (intracellular)</subject><subject>Calcium - metabolism</subject><subject>Cations</subject><subject>Cell culture</subject><subject>Charge distribution</subject><subject>Cysteine</subject><subject>Cysteine - chemistry</subject><subject>Fungal infections</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - toxicity</subject><subject>Fungicides</subject><subject>Gene mutation</subject><subject>Homeostasis</subject><subject>Internalization</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Mode of action</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Neurospora crassa</subject><subject>Opportunist infection</subject><subject>Organic chemistry</subject><subject>Penicillium chrysogenum</subject><subject>Penicillium chrysogenum - genetics</subject><subject>Penicillium chrysogenum - metabolism</subject><subject>Pharmaceutical industry</subject><subject>Physical Sciences</subject><subject>Platelet-activating factor</subject><subject>Protein Binding</subject><subject>Protein Denaturation</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Serine</subject><subject>Surface charge</subject><subject>Toxicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggsISGQ1mLHduxwgVR1FCoNNq0bt5bjOI2r1C6xM7G34JFx1m5q0C6mXMQ-_s5v6_znJMlrBMcIM_Rp5brWyma8cVaPIcryPIVPkkOU43SUpRA_3VsfJC-8X0FIMc-y58lByiFLeUoOk78nKF-AH12QwTgLXAVCrcH0dmfUMZje-KCN1aMLo2pw3rp-B84ns8_gp7vWDZhbb5Z18MDY4MA8Lhah7VToWtmAkxsr10b5Y3BZ63YdI1e2ck1p7BJIW4KJDabq7DIezDqr-ktfJs8q2Xj9avc_Sq5mXy-n30enZ9_m08npSLGUhhErmOaVLCQmEJFMVxxJhEssSYqgzDGTjFcEVbmmBWYlJJxTjHghGVGIFhofJW-3upvGebErpheIU4YzmFEUifmWKJ1ciU1r1rK9EU4acRtw7VLINhjVaIFLSdOigDkpOYFScxYVCsVoBQuGiypqfdnd1hVrXSptQ6zPQHR4Yk0tlu5a0DQlec6iwIedQOt-d9oHsTZe6aaRVruuf3fGcTSVZY9AKWMU0jyP6Lv_0IcLsaOiT1qY6GB8oupFxYQwBiFhsKfGD1DxK3VsgdiklYnxQcLHQUJkgv4TlrLzXswXF49nz34N2fd7bK1lE2rvmq7vLj8EyRZUrfO-1dW9HwiKfsbuqiH6GRO7GYtpb_a9vE-6Gyr8D8GbIIk</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Sonderegger, Christoph</creator><creator>Fizil, Ádám</creator><creator>Burtscher, Laura</creator><creator>Hajdu, Dorottya</creator><creator>Muñoz, Alberto</creator><creator>Gáspári, Zoltán</creator><creator>Read, Nick D</creator><creator>Batta, Gyula</creator><creator>Marx, Florentine</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8408-1842</orcidid></search><sort><creationdate>20170110</creationdate><title>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</title><author>Sonderegger, Christoph ; Fizil, Ádám ; Burtscher, Laura ; Hajdu, Dorottya ; Muñoz, Alberto ; Gáspári, Zoltán ; Read, Nick D ; Batta, Gyula ; Marx, Florentine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Amino Acid Motifs</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Antifungal activity</topic><topic>Antifungal agents</topic><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - toxicity</topic><topic>Ascomycetes</topic><topic>Ascomycota</topic><topic>Aspartic acid</topic><topic>Aspergillus fumigatus</topic><topic>Aspergillus nidulans</topic><topic>Binding Sites</topic><topic>Biology and Life Sciences</topic><topic>Calcium (intracellular)</topic><topic>Calcium - metabolism</topic><topic>Cations</topic><topic>Cell culture</topic><topic>Charge distribution</topic><topic>Cysteine</topic><topic>Cysteine - chemistry</topic><topic>Fungal infections</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - toxicity</topic><topic>Fungicides</topic><topic>Gene mutation</topic><topic>Homeostasis</topic><topic>Internalization</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Mode of action</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Neurospora crassa</topic><topic>Opportunist infection</topic><topic>Organic chemistry</topic><topic>Penicillium chrysogenum</topic><topic>Penicillium chrysogenum - genetics</topic><topic>Penicillium chrysogenum - metabolism</topic><topic>Pharmaceutical industry</topic><topic>Physical Sciences</topic><topic>Platelet-activating factor</topic><topic>Protein Binding</topic><topic>Protein Denaturation</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Serine</topic><topic>Surface charge</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonderegger, Christoph</creatorcontrib><creatorcontrib>Fizil, Ádám</creatorcontrib><creatorcontrib>Burtscher, Laura</creatorcontrib><creatorcontrib>Hajdu, Dorottya</creatorcontrib><creatorcontrib>Muñoz, Alberto</creatorcontrib><creatorcontrib>Gáspári, Zoltán</creatorcontrib><creatorcontrib>Read, Nick D</creatorcontrib><creatorcontrib>Batta, Gyula</creatorcontrib><creatorcontrib>Marx, Florentine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonderegger, Christoph</au><au>Fizil, Ádám</au><au>Burtscher, Laura</au><au>Hajdu, Dorottya</au><au>Muñoz, Alberto</au><au>Gáspári, Zoltán</au><au>Read, Nick D</au><au>Batta, Gyula</au><au>Marx, Florentine</au><au>Permyakov, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169920</spage><pages>e0169920-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28072824</pmid><doi>10.1371/journal.pone.0169920</doi><tpages>e0169920</tpages><orcidid>https://orcid.org/0000-0002-8408-1842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-01, Vol.12 (1), p.e0169920
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1857360651
source PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Acids
Amino Acid Motifs
Amino acids
Analysis
Antifungal activity
Antifungal agents
Antifungal Agents - chemistry
Antifungal Agents - toxicity
Ascomycetes
Ascomycota
Aspartic acid
Aspergillus fumigatus
Aspergillus nidulans
Binding Sites
Biology and Life Sciences
Calcium (intracellular)
Calcium - metabolism
Cations
Cell culture
Charge distribution
Cysteine
Cysteine - chemistry
Fungal infections
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - toxicity
Fungicides
Gene mutation
Homeostasis
Internalization
Kinases
Medicine and Health Sciences
Mode of action
Molecular biology
Molecular Dynamics Simulation
Mutation
Mutation, Missense
Neurospora crassa
Opportunist infection
Organic chemistry
Penicillium chrysogenum
Penicillium chrysogenum - genetics
Penicillium chrysogenum - metabolism
Pharmaceutical industry
Physical Sciences
Platelet-activating factor
Protein Binding
Protein Denaturation
Proteins
Research and Analysis Methods
Serine
Surface charge
Toxicity
title D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D19S%20Mutation%20of%20the%20Cationic,%20Cysteine-Rich%20Protein%20PAF:%20Novel%20Insights%20into%20Its%20Structural%20Dynamics,%20Thermal%20Unfolding%20and%20Antifungal%20Function&rft.jtitle=PloS%20one&rft.au=Sonderegger,%20Christoph&rft.date=2017-01-10&rft.volume=12&rft.issue=1&rft.spage=e0169920&rft.pages=e0169920-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169920&rft_dat=%3Cgale_plos_%3EA477004701%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c725t-7b7e8faba340146ef81a13d3a4210a937a78f41f9e5b37d04885318ba74c15be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1857360651&rft_id=info:pmid/28072824&rft_galeid=A477004701&rfr_iscdi=true