Loading…
Pain: A Statistical Account
Perception is seen as a process that utilises partial and noisy information to construct a coherent understanding of the world. Here we argue that the experience of pain is no different; it is based on incomplete, multimodal information, which is used to estimate potential bodily threat. We outline...
Saved in:
Published in: | PLoS computational biology 2017-01, Vol.13 (1), p.e1005142-e1005142 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c661t-6983ee5340f8ab4d6b65eb83e2c9d01f3a3b2ecdc011570a16ab3c33f40242183 |
---|---|
cites | cdi_FETCH-LOGICAL-c661t-6983ee5340f8ab4d6b65eb83e2c9d01f3a3b2ecdc011570a16ab3c33f40242183 |
container_end_page | e1005142 |
container_issue | 1 |
container_start_page | e1005142 |
container_title | PLoS computational biology |
container_volume | 13 |
creator | Tabor, Abby Thacker, Michael A Moseley, G Lorimer Körding, Konrad P |
description | Perception is seen as a process that utilises partial and noisy information to construct a coherent understanding of the world. Here we argue that the experience of pain is no different; it is based on incomplete, multimodal information, which is used to estimate potential bodily threat. We outline a Bayesian inference model, incorporating the key components of cue combination, causal inference, and temporal integration, which highlights the statistical problems in everyday perception. It is from this platform that we are able to review the pain literature, providing evidence from experimental, acute, and persistent phenomena to demonstrate the advantages of adopting a statistical account in pain. Our probabilistic conceptualisation suggests a principles-based view of pain, explaining a broad range of experimental and clinical findings and making testable predictions. |
doi_str_mv | 10.1371/journal.pcbi.1005142 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1868997410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493714091</galeid><doaj_id>oai_doaj_org_article_baeb4433dc654ce09a9eeb90cb5d016f</doaj_id><sourcerecordid>A493714091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-6983ee5340f8ab4d6b65eb83e2c9d01f3a3b2ecdc011570a16ab3c33f40242183</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEog_4BCBYiQscdvHEj8QckFYVj5UqQBTO1tiZLF5l422coPLt8XbTqkG9IB88Gv_mPw9Plj0HtgBewNtNGLoWm8XOWb8AxiSI_EF2DFLyecFl-fCOfZSdxLhhLJlaPc6O8pKVAFwcZ8--oW_fzZazix57H3vvsJktnQtD2z_JHtXYRHo63qfZz48ffpx9np9__bQ6W57PnVLQz5UuOZHkgtUlWlEpqyTZ5MudrhjUHLnNyVWOAciCISi03HFeC5aLHEp-mr086O6aEM3YVzRQqlLrQgBLxOpAVAE3Ztf5LXZ_TEBvrh2hWxvsUu0NGYtkheC8ckoKR0yjJrKaOStTMapOWu_HbIPdUuWo7TtsJqLTl9b_Muvw28ics0KoJPB6FOjC5UCxN1sfHTUNthSG67pBqDRfkdBX_6D3dzdSa0wN-LYOKa_bi5ql0OmvBdOQqMU9VDoVbb0LLdU--ScBbyYBienpql_jEKNZXXz_D_bLlBUH1nUhxo7q29kBM_vVvGnS7FfTjKuZwl7cnftt0M0u8r83f9wI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868997410</pqid></control><display><type>article</type><title>Pain: A Statistical Account</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Tabor, Abby ; Thacker, Michael A ; Moseley, G Lorimer ; Körding, Konrad P</creator><contributor>Blohm, Gunnar</contributor><creatorcontrib>Tabor, Abby ; Thacker, Michael A ; Moseley, G Lorimer ; Körding, Konrad P ; Blohm, Gunnar</creatorcontrib><description>Perception is seen as a process that utilises partial and noisy information to construct a coherent understanding of the world. Here we argue that the experience of pain is no different; it is based on incomplete, multimodal information, which is used to estimate potential bodily threat. We outline a Bayesian inference model, incorporating the key components of cue combination, causal inference, and temporal integration, which highlights the statistical problems in everyday perception. It is from this platform that we are able to review the pain literature, providing evidence from experimental, acute, and persistent phenomena to demonstrate the advantages of adopting a statistical account in pain. Our probabilistic conceptualisation suggests a principles-based view of pain, explaining a broad range of experimental and clinical findings and making testable predictions.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005142</identifier><identifier>PMID: 28081134</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Biology and Life Sciences ; Brain research ; Colleges & universities ; Funding ; Humans ; Medical research ; Medicine and Health Sciences ; Models, Neurological ; Models, Statistical ; Pain ; Pain - physiopathology ; Pain Perception - physiology ; Perceptions ; Physical Sciences ; Psychological aspects ; Review ; Social Sciences</subject><ispartof>PLoS computational biology, 2017-01, Vol.13 (1), p.e1005142-e1005142</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tabor A, Thacker MA, Moseley GL, Körding KP (2017) Pain: A Statistical Account. PLoS Comput Biol 13(1): e1005142. doi:10.1371/journal.pcbi.1005142</rights><rights>2017 Tabor et al 2017 Tabor et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tabor A, Thacker MA, Moseley GL, Körding KP (2017) Pain: A Statistical Account. PLoS Comput Biol 13(1): e1005142. doi:10.1371/journal.pcbi.1005142</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-6983ee5340f8ab4d6b65eb83e2c9d01f3a3b2ecdc011570a16ab3c33f40242183</citedby><cites>FETCH-LOGICAL-c661t-6983ee5340f8ab4d6b65eb83e2c9d01f3a3b2ecdc011570a16ab3c33f40242183</cites><orcidid>0000-0002-8168-2052 ; 0000-0001-8408-4499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1868997410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1868997410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,723,776,780,788,881,25731,27899,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28081134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Blohm, Gunnar</contributor><creatorcontrib>Tabor, Abby</creatorcontrib><creatorcontrib>Thacker, Michael A</creatorcontrib><creatorcontrib>Moseley, G Lorimer</creatorcontrib><creatorcontrib>Körding, Konrad P</creatorcontrib><title>Pain: A Statistical Account</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Perception is seen as a process that utilises partial and noisy information to construct a coherent understanding of the world. Here we argue that the experience of pain is no different; it is based on incomplete, multimodal information, which is used to estimate potential bodily threat. We outline a Bayesian inference model, incorporating the key components of cue combination, causal inference, and temporal integration, which highlights the statistical problems in everyday perception. It is from this platform that we are able to review the pain literature, providing evidence from experimental, acute, and persistent phenomena to demonstrate the advantages of adopting a statistical account in pain. Our probabilistic conceptualisation suggests a principles-based view of pain, explaining a broad range of experimental and clinical findings and making testable predictions.</description><subject>Bayes Theorem</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Colleges & universities</subject><subject>Funding</subject><subject>Humans</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Pain</subject><subject>Pain - physiopathology</subject><subject>Pain Perception - physiology</subject><subject>Perceptions</subject><subject>Physical Sciences</subject><subject>Psychological aspects</subject><subject>Review</subject><subject>Social Sciences</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEog_4BCBYiQscdvHEj8QckFYVj5UqQBTO1tiZLF5l422coPLt8XbTqkG9IB88Gv_mPw9Plj0HtgBewNtNGLoWm8XOWb8AxiSI_EF2DFLyecFl-fCOfZSdxLhhLJlaPc6O8pKVAFwcZ8--oW_fzZazix57H3vvsJktnQtD2z_JHtXYRHo63qfZz48ffpx9np9__bQ6W57PnVLQz5UuOZHkgtUlWlEpqyTZ5MudrhjUHLnNyVWOAciCISi03HFeC5aLHEp-mr086O6aEM3YVzRQqlLrQgBLxOpAVAE3Ztf5LXZ_TEBvrh2hWxvsUu0NGYtkheC8ckoKR0yjJrKaOStTMapOWu_HbIPdUuWo7TtsJqLTl9b_Muvw28ics0KoJPB6FOjC5UCxN1sfHTUNthSG67pBqDRfkdBX_6D3dzdSa0wN-LYOKa_bi5ql0OmvBdOQqMU9VDoVbb0LLdU--ScBbyYBienpql_jEKNZXXz_D_bLlBUH1nUhxo7q29kBM_vVvGnS7FfTjKuZwl7cnftt0M0u8r83f9wI</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Tabor, Abby</creator><creator>Thacker, Michael A</creator><creator>Moseley, G Lorimer</creator><creator>Körding, Konrad P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8168-2052</orcidid><orcidid>https://orcid.org/0000-0001-8408-4499</orcidid></search><sort><creationdate>20170101</creationdate><title>Pain: A Statistical Account</title><author>Tabor, Abby ; Thacker, Michael A ; Moseley, G Lorimer ; Körding, Konrad P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-6983ee5340f8ab4d6b65eb83e2c9d01f3a3b2ecdc011570a16ab3c33f40242183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes Theorem</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Colleges & universities</topic><topic>Funding</topic><topic>Humans</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Pain</topic><topic>Pain - physiopathology</topic><topic>Pain Perception - physiology</topic><topic>Perceptions</topic><topic>Physical Sciences</topic><topic>Psychological aspects</topic><topic>Review</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabor, Abby</creatorcontrib><creatorcontrib>Thacker, Michael A</creatorcontrib><creatorcontrib>Moseley, G Lorimer</creatorcontrib><creatorcontrib>Körding, Konrad P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabor, Abby</au><au>Thacker, Michael A</au><au>Moseley, G Lorimer</au><au>Körding, Konrad P</au><au>Blohm, Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pain: A Statistical Account</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>13</volume><issue>1</issue><spage>e1005142</spage><epage>e1005142</epage><pages>e1005142-e1005142</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Perception is seen as a process that utilises partial and noisy information to construct a coherent understanding of the world. Here we argue that the experience of pain is no different; it is based on incomplete, multimodal information, which is used to estimate potential bodily threat. We outline a Bayesian inference model, incorporating the key components of cue combination, causal inference, and temporal integration, which highlights the statistical problems in everyday perception. It is from this platform that we are able to review the pain literature, providing evidence from experimental, acute, and persistent phenomena to demonstrate the advantages of adopting a statistical account in pain. Our probabilistic conceptualisation suggests a principles-based view of pain, explaining a broad range of experimental and clinical findings and making testable predictions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28081134</pmid><doi>10.1371/journal.pcbi.1005142</doi><orcidid>https://orcid.org/0000-0002-8168-2052</orcidid><orcidid>https://orcid.org/0000-0001-8408-4499</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2017-01, Vol.13 (1), p.e1005142-e1005142 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1868997410 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Bayes Theorem Biology and Life Sciences Brain research Colleges & universities Funding Humans Medical research Medicine and Health Sciences Models, Neurological Models, Statistical Pain Pain - physiopathology Pain Perception - physiology Perceptions Physical Sciences Psychological aspects Review Social Sciences |
title | Pain: A Statistical Account |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pain:%20A%20Statistical%20Account&rft.jtitle=PLoS%20computational%20biology&rft.au=Tabor,%20Abby&rft.date=2017-01-01&rft.volume=13&rft.issue=1&rft.spage=e1005142&rft.epage=e1005142&rft.pages=e1005142-e1005142&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005142&rft_dat=%3Cgale_plos_%3EA493714091%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-6983ee5340f8ab4d6b65eb83e2c9d01f3a3b2ecdc011570a16ab3c33f40242183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1868997410&rft_id=info:pmid/28081134&rft_galeid=A493714091&rfr_iscdi=true |