Loading…

A multistrain approach to studying the mechanisms underlying compatibility in the interaction between Biomphalaria glabrata and Schistosoma mansoni

In recent decades, numerous studies have sought to better understand the mechanisms underlying the compatibility between Biomphalaria glabrata and Schistosoma mansoni. The developments of comparative transcriptomics, comparative genomics, interactomics and more targeted approaches have enabled resea...

Full description

Saved in:
Bibliographic Details
Published in:PLoS neglected tropical diseases 2017-03, Vol.11 (3), p.e0005398-e0005398
Main Authors: Galinier, Richard, Roger, Emmanuel, Moné, Yves, Duval, David, Portet, Anaïs, Pinaud, Silvain, Chaparro, Cristian, Grunau, Christoph, Genthon, Clémence, Dubois, Emeric, Rognon, Anne, Arancibia, Nathalie, Dejean, Bernard, Théron, André, Gourbal, Benjamin, Mitta, Guillaume
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent decades, numerous studies have sought to better understand the mechanisms underlying the compatibility between Biomphalaria glabrata and Schistosoma mansoni. The developments of comparative transcriptomics, comparative genomics, interactomics and more targeted approaches have enabled researchers to identify a series of candidate genes. However, no molecular comparative work has yet been performed on multiple populations displaying different levels of compatibility. Here, we seek to fill this gap in the literature. We focused on B. glabrata FREPs and S. mansoni SmPoMucs, which were previously demonstrated to be involved in snail/schistosome compatibility. We studied the expression and polymorphisms of these factors in combinations of snail and schistosome isolates that display different levels of compatibility. We found that the polymorphism and expression levels of FREPs and SmPoMucs could be linked to the compatibility level of S. mansoni. These data and our complementary results obtained by RNA-seq of samples from various snail strains indicate that the mechanism of compatibility is much more complex than previously thought, and that it is likely to be highly variable within and between populations. This complexity must be taken into account if we hope to identify the molecular pathways that are most likely to be good targets for strategies aimed at blocking transmission of the parasite through the snail intermediate host.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0005398