Loading…
ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts
Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-rel...
Saved in:
Published in: | PloS one 2017-04, Vol.12 (4), p.e0176196-e0176196 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3 |
container_end_page | e0176196 |
container_issue | 4 |
container_start_page | e0176196 |
container_title | PloS one |
container_volume | 12 |
creator | Lu, Xiaolin Ding, Yin Niu, Qiannan Xuan, Shijie Yang, Yan Jin, Yulong Wang, Huan |
description | Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells.
A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well.
From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation. |
doi_str_mv | 10.1371/journal.pone.0176196 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1891395280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be5e1ceabdbc4edc8f477643a3e25082</doaj_id><sourcerecordid>1891888556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</originalsourceid><addsrcrecordid>eNptUsuKFDEULURxHvoHogE3s6k2j8qjNoI0PgYG3OhKJKSSm-406UqbVAvz96atmmFGXOWSe86591xO07wieEWYJO926ZhHE1eHNMIKEylIL54056RntBUUs6cP6rPmopQdxpwpIZ43Z1R1THZSnDdlHdctQ3YbUw4OamHGESLagwtmgoKmLaCcIqDk0cFkM21vcwoObVPe18noB2lZ9xOlEaUyQdrAGCxywXvIME5VI5xafu4O0ZSpvGieeRMLvFzey-b7p4_f1l_am6-fr9cfblrLqZha2hnXM0lZb6UC7t2gsBmEkRT3FMB66IUEiztvJfeKEjJQSYF5xz0fANhl82bWPcRU9HKvoonqCes5VbgirmeES2anDznsTb7VyQT99yPljTZ5CjaCHoADsWAGN9gOnFW-k1J0zDCgHCtatd4v045DvZ6t7rOJj0Qfd8aw1Zv0W_MO07pOFbhaBHL6dYQy6X0oFmI0I6TjvLdSinNRoW__gf7fXTejbE6lZPD3yxCsTxm6Y-lThvSSoUp7_dDIPekuNOwPIsXHgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891395280</pqid></control><display><type>article</type><title>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lu, Xiaolin ; Ding, Yin ; Niu, Qiannan ; Xuan, Shijie ; Yang, Yan ; Jin, Yulong ; Wang, Huan</creator><contributor>Heymann, Dominique</contributor><creatorcontrib>Lu, Xiaolin ; Ding, Yin ; Niu, Qiannan ; Xuan, Shijie ; Yang, Yan ; Jin, Yulong ; Wang, Huan ; Heymann, Dominique</creatorcontrib><description>Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells.
A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well.
From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176196</identifier><identifier>PMID: 28437476</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidification ; Alkaline phosphatase ; Alkaline Phosphatase - genetics ; Alkaline Phosphatase - metabolism ; American Type Culture Collection ; Animals ; Anthraquinone ; Apoptosis ; Attention ; Biochemistry ; Biology and life sciences ; Bisphosphonates ; Bone density ; Bone growth ; Bone marrow ; Bone mass ; Bone mineral density ; Bone morphogenetic proteins ; Bone remodeling ; Bone strength ; Carbon dioxide ; Cartilage ; Cell differentiation ; Cell growth ; Cell Line ; Cell Proliferation - drug effects ; Cell Proliferation - physiology ; Chloride ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chloride ions ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Culture media ; Degradation ; Differentiation (biology) ; Engineering ; Estrogens ; Gene expression ; Glands ; Hematology ; Hippocampus ; Hypersensitivity ; Immunofluorescence ; Inactivation ; Injection ; Ion channels ; Kidneys ; Kinases ; Kinetics ; Laboratories ; Medicine and Health Sciences ; Metabolism ; Mice ; Military ; Mineralization ; Nodules ; Older people ; Orthodontics ; Osteoblasts ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Osteogenesis - drug effects ; Osteogenesis - physiology ; Osteopontin - genetics ; Osteopontin - metabolism ; Osteoporosis ; Parathyroid Hormone - pharmacology ; Physical Sciences ; Proteins ; Real time ; Research and Analysis Methods ; RNA, Small Interfering ; Side effects ; Signal Transduction - drug effects ; Sp7 Transcription Factor ; Stem cells ; Stimulation ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0176196-e0176196</ispartof><rights>2017 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lu et al 2017 Lu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</citedby><cites>FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</cites><orcidid>0000-0002-6907-875X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1891395280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1891395280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28437476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Heymann, Dominique</contributor><creatorcontrib>Lu, Xiaolin</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Niu, Qiannan</creatorcontrib><creatorcontrib>Xuan, Shijie</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Jin, Yulong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><title>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells.
A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well.
From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.</description><subject>Acidification</subject><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - genetics</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>American Type Culture Collection</subject><subject>Animals</subject><subject>Anthraquinone</subject><subject>Apoptosis</subject><subject>Attention</subject><subject>Biochemistry</subject><subject>Biology and life sciences</subject><subject>Bisphosphonates</subject><subject>Bone density</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone mass</subject><subject>Bone mineral density</subject><subject>Bone morphogenetic proteins</subject><subject>Bone remodeling</subject><subject>Bone strength</subject><subject>Carbon dioxide</subject><subject>Cartilage</subject><subject>Cell differentiation</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - physiology</subject><subject>Chloride</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chloride ions</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Culture media</subject><subject>Degradation</subject><subject>Differentiation (biology)</subject><subject>Engineering</subject><subject>Estrogens</subject><subject>Gene expression</subject><subject>Glands</subject><subject>Hematology</subject><subject>Hippocampus</subject><subject>Hypersensitivity</subject><subject>Immunofluorescence</subject><subject>Inactivation</subject><subject>Injection</subject><subject>Ion channels</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Military</subject><subject>Mineralization</subject><subject>Nodules</subject><subject>Older people</subject><subject>Orthodontics</subject><subject>Osteoblasts</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - physiology</subject><subject>Osteopontin - genetics</subject><subject>Osteopontin - metabolism</subject><subject>Osteoporosis</subject><subject>Parathyroid Hormone - pharmacology</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Real time</subject><subject>Research and Analysis Methods</subject><subject>RNA, Small Interfering</subject><subject>Side effects</subject><subject>Signal Transduction - drug effects</subject><subject>Sp7 Transcription Factor</subject><subject>Stem cells</subject><subject>Stimulation</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsuKFDEULURxHvoHogE3s6k2j8qjNoI0PgYG3OhKJKSSm-406UqbVAvz96atmmFGXOWSe86591xO07wieEWYJO926ZhHE1eHNMIKEylIL54056RntBUUs6cP6rPmopQdxpwpIZ43Z1R1THZSnDdlHdctQ3YbUw4OamHGESLagwtmgoKmLaCcIqDk0cFkM21vcwoObVPe18noB2lZ9xOlEaUyQdrAGCxywXvIME5VI5xafu4O0ZSpvGieeRMLvFzey-b7p4_f1l_am6-fr9cfblrLqZha2hnXM0lZb6UC7t2gsBmEkRT3FMB66IUEiztvJfeKEjJQSYF5xz0fANhl82bWPcRU9HKvoonqCes5VbgirmeES2anDznsTb7VyQT99yPljTZ5CjaCHoADsWAGN9gOnFW-k1J0zDCgHCtatd4v045DvZ6t7rOJj0Qfd8aw1Zv0W_MO07pOFbhaBHL6dYQy6X0oFmI0I6TjvLdSinNRoW__gf7fXTejbE6lZPD3yxCsTxm6Y-lThvSSoUp7_dDIPekuNOwPIsXHgg</recordid><startdate>20170424</startdate><enddate>20170424</enddate><creator>Lu, Xiaolin</creator><creator>Ding, Yin</creator><creator>Niu, Qiannan</creator><creator>Xuan, Shijie</creator><creator>Yang, Yan</creator><creator>Jin, Yulong</creator><creator>Wang, Huan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6907-875X</orcidid></search><sort><creationdate>20170424</creationdate><title>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</title><author>Lu, Xiaolin ; Ding, Yin ; Niu, Qiannan ; Xuan, Shijie ; Yang, Yan ; Jin, Yulong ; Wang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidification</topic><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - genetics</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>American Type Culture Collection</topic><topic>Animals</topic><topic>Anthraquinone</topic><topic>Apoptosis</topic><topic>Attention</topic><topic>Biochemistry</topic><topic>Biology and life sciences</topic><topic>Bisphosphonates</topic><topic>Bone density</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone mass</topic><topic>Bone mineral density</topic><topic>Bone morphogenetic proteins</topic><topic>Bone remodeling</topic><topic>Bone strength</topic><topic>Carbon dioxide</topic><topic>Cartilage</topic><topic>Cell differentiation</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - physiology</topic><topic>Chloride</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chloride ions</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Culture media</topic><topic>Degradation</topic><topic>Differentiation (biology)</topic><topic>Engineering</topic><topic>Estrogens</topic><topic>Gene expression</topic><topic>Glands</topic><topic>Hematology</topic><topic>Hippocampus</topic><topic>Hypersensitivity</topic><topic>Immunofluorescence</topic><topic>Inactivation</topic><topic>Injection</topic><topic>Ion channels</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Military</topic><topic>Mineralization</topic><topic>Nodules</topic><topic>Older people</topic><topic>Orthodontics</topic><topic>Osteoblasts</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - physiology</topic><topic>Osteopontin - genetics</topic><topic>Osteopontin - metabolism</topic><topic>Osteoporosis</topic><topic>Parathyroid Hormone - pharmacology</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Real time</topic><topic>Research and Analysis Methods</topic><topic>RNA, Small Interfering</topic><topic>Side effects</topic><topic>Signal Transduction - drug effects</topic><topic>Sp7 Transcription Factor</topic><topic>Stem cells</topic><topic>Stimulation</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaolin</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Niu, Qiannan</creatorcontrib><creatorcontrib>Xuan, Shijie</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Jin, Yulong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaolin</au><au>Ding, Yin</au><au>Niu, Qiannan</au><au>Xuan, Shijie</au><au>Yang, Yan</au><au>Jin, Yulong</au><au>Wang, Huan</au><au>Heymann, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-24</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0176196</spage><epage>e0176196</epage><pages>e0176196-e0176196</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells.
A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well.
From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28437476</pmid><doi>10.1371/journal.pone.0176196</doi><orcidid>https://orcid.org/0000-0002-6907-875X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0176196-e0176196 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1891395280 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acidification Alkaline phosphatase Alkaline Phosphatase - genetics Alkaline Phosphatase - metabolism American Type Culture Collection Animals Anthraquinone Apoptosis Attention Biochemistry Biology and life sciences Bisphosphonates Bone density Bone growth Bone marrow Bone mass Bone mineral density Bone morphogenetic proteins Bone remodeling Bone strength Carbon dioxide Cartilage Cell differentiation Cell growth Cell Line Cell Proliferation - drug effects Cell Proliferation - physiology Chloride Chloride Channels - genetics Chloride Channels - metabolism Chloride ions Core Binding Factor Alpha 1 Subunit - genetics Core Binding Factor Alpha 1 Subunit - metabolism Culture media Degradation Differentiation (biology) Engineering Estrogens Gene expression Glands Hematology Hippocampus Hypersensitivity Immunofluorescence Inactivation Injection Ion channels Kidneys Kinases Kinetics Laboratories Medicine and Health Sciences Metabolism Mice Military Mineralization Nodules Older people Orthodontics Osteoblasts Osteoblasts - drug effects Osteoblasts - metabolism Osteocalcin - genetics Osteocalcin - metabolism Osteogenesis - drug effects Osteogenesis - physiology Osteopontin - genetics Osteopontin - metabolism Osteoporosis Parathyroid Hormone - pharmacology Physical Sciences Proteins Real time Research and Analysis Methods RNA, Small Interfering Side effects Signal Transduction - drug effects Sp7 Transcription Factor Stem cells Stimulation Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ClC-3%20chloride%20channel%20mediates%20the%20role%20of%20parathyroid%20hormone%20%5B1-34%5D%20on%20osteogenic%20differentiation%20of%20osteoblasts&rft.jtitle=PloS%20one&rft.au=Lu,%20Xiaolin&rft.date=2017-04-24&rft.volume=12&rft.issue=4&rft.spage=e0176196&rft.epage=e0176196&rft.pages=e0176196-e0176196&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176196&rft_dat=%3Cproquest_plos_%3E1891888556%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891395280&rft_id=info:pmid/28437476&rfr_iscdi=true |