Loading…

ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts

Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-rel...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-04, Vol.12 (4), p.e0176196-e0176196
Main Authors: Lu, Xiaolin, Ding, Yin, Niu, Qiannan, Xuan, Shijie, Yang, Yan, Jin, Yulong, Wang, Huan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3
cites cdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3
container_end_page e0176196
container_issue 4
container_start_page e0176196
container_title PloS one
container_volume 12
creator Lu, Xiaolin
Ding, Yin
Niu, Qiannan
Xuan, Shijie
Yang, Yan
Jin, Yulong
Wang, Huan
description Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells. A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well. From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.
doi_str_mv 10.1371/journal.pone.0176196
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1891395280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be5e1ceabdbc4edc8f477643a3e25082</doaj_id><sourcerecordid>1891888556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</originalsourceid><addsrcrecordid>eNptUsuKFDEULURxHvoHogE3s6k2j8qjNoI0PgYG3OhKJKSSm-406UqbVAvz96atmmFGXOWSe86591xO07wieEWYJO926ZhHE1eHNMIKEylIL54056RntBUUs6cP6rPmopQdxpwpIZ43Z1R1THZSnDdlHdctQ3YbUw4OamHGESLagwtmgoKmLaCcIqDk0cFkM21vcwoObVPe18noB2lZ9xOlEaUyQdrAGCxywXvIME5VI5xafu4O0ZSpvGieeRMLvFzey-b7p4_f1l_am6-fr9cfblrLqZha2hnXM0lZb6UC7t2gsBmEkRT3FMB66IUEiztvJfeKEjJQSYF5xz0fANhl82bWPcRU9HKvoonqCes5VbgirmeES2anDznsTb7VyQT99yPljTZ5CjaCHoADsWAGN9gOnFW-k1J0zDCgHCtatd4v045DvZ6t7rOJj0Qfd8aw1Zv0W_MO07pOFbhaBHL6dYQy6X0oFmI0I6TjvLdSinNRoW__gf7fXTejbE6lZPD3yxCsTxm6Y-lThvSSoUp7_dDIPekuNOwPIsXHgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891395280</pqid></control><display><type>article</type><title>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lu, Xiaolin ; Ding, Yin ; Niu, Qiannan ; Xuan, Shijie ; Yang, Yan ; Jin, Yulong ; Wang, Huan</creator><contributor>Heymann, Dominique</contributor><creatorcontrib>Lu, Xiaolin ; Ding, Yin ; Niu, Qiannan ; Xuan, Shijie ; Yang, Yan ; Jin, Yulong ; Wang, Huan ; Heymann, Dominique</creatorcontrib><description>Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells. A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well. From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176196</identifier><identifier>PMID: 28437476</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidification ; Alkaline phosphatase ; Alkaline Phosphatase - genetics ; Alkaline Phosphatase - metabolism ; American Type Culture Collection ; Animals ; Anthraquinone ; Apoptosis ; Attention ; Biochemistry ; Biology and life sciences ; Bisphosphonates ; Bone density ; Bone growth ; Bone marrow ; Bone mass ; Bone mineral density ; Bone morphogenetic proteins ; Bone remodeling ; Bone strength ; Carbon dioxide ; Cartilage ; Cell differentiation ; Cell growth ; Cell Line ; Cell Proliferation - drug effects ; Cell Proliferation - physiology ; Chloride ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chloride ions ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Culture media ; Degradation ; Differentiation (biology) ; Engineering ; Estrogens ; Gene expression ; Glands ; Hematology ; Hippocampus ; Hypersensitivity ; Immunofluorescence ; Inactivation ; Injection ; Ion channels ; Kidneys ; Kinases ; Kinetics ; Laboratories ; Medicine and Health Sciences ; Metabolism ; Mice ; Military ; Mineralization ; Nodules ; Older people ; Orthodontics ; Osteoblasts ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Osteogenesis - drug effects ; Osteogenesis - physiology ; Osteopontin - genetics ; Osteopontin - metabolism ; Osteoporosis ; Parathyroid Hormone - pharmacology ; Physical Sciences ; Proteins ; Real time ; Research and Analysis Methods ; RNA, Small Interfering ; Side effects ; Signal Transduction - drug effects ; Sp7 Transcription Factor ; Stem cells ; Stimulation ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0176196-e0176196</ispartof><rights>2017 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lu et al 2017 Lu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</citedby><cites>FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</cites><orcidid>0000-0002-6907-875X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1891395280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1891395280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28437476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Heymann, Dominique</contributor><creatorcontrib>Lu, Xiaolin</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Niu, Qiannan</creatorcontrib><creatorcontrib>Xuan, Shijie</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Jin, Yulong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><title>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells. A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well. From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.</description><subject>Acidification</subject><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - genetics</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>American Type Culture Collection</subject><subject>Animals</subject><subject>Anthraquinone</subject><subject>Apoptosis</subject><subject>Attention</subject><subject>Biochemistry</subject><subject>Biology and life sciences</subject><subject>Bisphosphonates</subject><subject>Bone density</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone mass</subject><subject>Bone mineral density</subject><subject>Bone morphogenetic proteins</subject><subject>Bone remodeling</subject><subject>Bone strength</subject><subject>Carbon dioxide</subject><subject>Cartilage</subject><subject>Cell differentiation</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - physiology</subject><subject>Chloride</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chloride ions</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Culture media</subject><subject>Degradation</subject><subject>Differentiation (biology)</subject><subject>Engineering</subject><subject>Estrogens</subject><subject>Gene expression</subject><subject>Glands</subject><subject>Hematology</subject><subject>Hippocampus</subject><subject>Hypersensitivity</subject><subject>Immunofluorescence</subject><subject>Inactivation</subject><subject>Injection</subject><subject>Ion channels</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Military</subject><subject>Mineralization</subject><subject>Nodules</subject><subject>Older people</subject><subject>Orthodontics</subject><subject>Osteoblasts</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - physiology</subject><subject>Osteopontin - genetics</subject><subject>Osteopontin - metabolism</subject><subject>Osteoporosis</subject><subject>Parathyroid Hormone - pharmacology</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Real time</subject><subject>Research and Analysis Methods</subject><subject>RNA, Small Interfering</subject><subject>Side effects</subject><subject>Signal Transduction - drug effects</subject><subject>Sp7 Transcription Factor</subject><subject>Stem cells</subject><subject>Stimulation</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsuKFDEULURxHvoHogE3s6k2j8qjNoI0PgYG3OhKJKSSm-406UqbVAvz96atmmFGXOWSe86591xO07wieEWYJO926ZhHE1eHNMIKEylIL54056RntBUUs6cP6rPmopQdxpwpIZ43Z1R1THZSnDdlHdctQ3YbUw4OamHGESLagwtmgoKmLaCcIqDk0cFkM21vcwoObVPe18noB2lZ9xOlEaUyQdrAGCxywXvIME5VI5xafu4O0ZSpvGieeRMLvFzey-b7p4_f1l_am6-fr9cfblrLqZha2hnXM0lZb6UC7t2gsBmEkRT3FMB66IUEiztvJfeKEjJQSYF5xz0fANhl82bWPcRU9HKvoonqCes5VbgirmeES2anDznsTb7VyQT99yPljTZ5CjaCHoADsWAGN9gOnFW-k1J0zDCgHCtatd4v045DvZ6t7rOJj0Qfd8aw1Zv0W_MO07pOFbhaBHL6dYQy6X0oFmI0I6TjvLdSinNRoW__gf7fXTejbE6lZPD3yxCsTxm6Y-lThvSSoUp7_dDIPekuNOwPIsXHgg</recordid><startdate>20170424</startdate><enddate>20170424</enddate><creator>Lu, Xiaolin</creator><creator>Ding, Yin</creator><creator>Niu, Qiannan</creator><creator>Xuan, Shijie</creator><creator>Yang, Yan</creator><creator>Jin, Yulong</creator><creator>Wang, Huan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6907-875X</orcidid></search><sort><creationdate>20170424</creationdate><title>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</title><author>Lu, Xiaolin ; Ding, Yin ; Niu, Qiannan ; Xuan, Shijie ; Yang, Yan ; Jin, Yulong ; Wang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidification</topic><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - genetics</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>American Type Culture Collection</topic><topic>Animals</topic><topic>Anthraquinone</topic><topic>Apoptosis</topic><topic>Attention</topic><topic>Biochemistry</topic><topic>Biology and life sciences</topic><topic>Bisphosphonates</topic><topic>Bone density</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone mass</topic><topic>Bone mineral density</topic><topic>Bone morphogenetic proteins</topic><topic>Bone remodeling</topic><topic>Bone strength</topic><topic>Carbon dioxide</topic><topic>Cartilage</topic><topic>Cell differentiation</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - physiology</topic><topic>Chloride</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chloride ions</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Culture media</topic><topic>Degradation</topic><topic>Differentiation (biology)</topic><topic>Engineering</topic><topic>Estrogens</topic><topic>Gene expression</topic><topic>Glands</topic><topic>Hematology</topic><topic>Hippocampus</topic><topic>Hypersensitivity</topic><topic>Immunofluorescence</topic><topic>Inactivation</topic><topic>Injection</topic><topic>Ion channels</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Military</topic><topic>Mineralization</topic><topic>Nodules</topic><topic>Older people</topic><topic>Orthodontics</topic><topic>Osteoblasts</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - physiology</topic><topic>Osteopontin - genetics</topic><topic>Osteopontin - metabolism</topic><topic>Osteoporosis</topic><topic>Parathyroid Hormone - pharmacology</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Real time</topic><topic>Research and Analysis Methods</topic><topic>RNA, Small Interfering</topic><topic>Side effects</topic><topic>Signal Transduction - drug effects</topic><topic>Sp7 Transcription Factor</topic><topic>Stem cells</topic><topic>Stimulation</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xiaolin</creatorcontrib><creatorcontrib>Ding, Yin</creatorcontrib><creatorcontrib>Niu, Qiannan</creatorcontrib><creatorcontrib>Xuan, Shijie</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Jin, Yulong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xiaolin</au><au>Ding, Yin</au><au>Niu, Qiannan</au><au>Xuan, Shijie</au><au>Yang, Yan</au><au>Jin, Yulong</au><au>Wang, Huan</au><au>Heymann, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-24</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0176196</spage><epage>e0176196</epage><pages>e0176196-e0176196</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Different concentrations of parathyroid hormone [1-34] (PTH [1-34]) can have totally opposite effects on osteoblasts. Intermittent stimulation with PTH can significantly increase bone mineral density in vitro, mainly through the protein kinase A (PKA) signaling pathway, which phosphorylates runt-related transcription factor 2 (Runx2). The ClC-3 chloride channel, an important anion channel, can also promote osteogenesis via the Runx2 pathway based on recent studies. The purpose of our study, therefore, is to research whether the ClC-3 chloride channel has an effect on PTH osteodifferentiation in MC3T3-E1 cells. A cell counting kit (CCK-8) and real-time PCR were used to investigate the impact of different PTH stimulation modes on MC3T3-E1 cell proliferation and osteogenesis-related gene expression, respectively. We found that the minimum inhibitory concentration of PTH was 10-9 M, and the expression of alkaline phosphatase (Alpl) and Runx2 were at the highest levels when treated with 10-9 M PTH. Next, we used real-time PCR and immunofluorescence technique to detect changes in ClC-3 in MC3T3-E1 cells under PTH treatment. The results showed higher expression of the ClC-3 chloride channel at 10-9 M intermittent PTH administration than in the other groups. Finally, we used the ClC-3 siRNA technique to examine the role of the ClC-3 chloride channel in the effect of PTH on the osteogenesis of osteoblasts, and we found an obvious decrease in the expression of bone sialoprotein (Ibsp), osteocalcin (Bglap), osterix (Sp7), Alpl and Runx2, the formation of mineralization nodules as well. From the above data, we conclude that the expression of ClC-3 chloride channels in osteoblasts helps them respond to PTH stimulation, which mediates osteogenic differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28437476</pmid><doi>10.1371/journal.pone.0176196</doi><orcidid>https://orcid.org/0000-0002-6907-875X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-04, Vol.12 (4), p.e0176196-e0176196
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1891395280
source Publicly Available Content Database; PubMed Central
subjects Acidification
Alkaline phosphatase
Alkaline Phosphatase - genetics
Alkaline Phosphatase - metabolism
American Type Culture Collection
Animals
Anthraquinone
Apoptosis
Attention
Biochemistry
Biology and life sciences
Bisphosphonates
Bone density
Bone growth
Bone marrow
Bone mass
Bone mineral density
Bone morphogenetic proteins
Bone remodeling
Bone strength
Carbon dioxide
Cartilage
Cell differentiation
Cell growth
Cell Line
Cell Proliferation - drug effects
Cell Proliferation - physiology
Chloride
Chloride Channels - genetics
Chloride Channels - metabolism
Chloride ions
Core Binding Factor Alpha 1 Subunit - genetics
Core Binding Factor Alpha 1 Subunit - metabolism
Culture media
Degradation
Differentiation (biology)
Engineering
Estrogens
Gene expression
Glands
Hematology
Hippocampus
Hypersensitivity
Immunofluorescence
Inactivation
Injection
Ion channels
Kidneys
Kinases
Kinetics
Laboratories
Medicine and Health Sciences
Metabolism
Mice
Military
Mineralization
Nodules
Older people
Orthodontics
Osteoblasts
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteocalcin - genetics
Osteocalcin - metabolism
Osteogenesis - drug effects
Osteogenesis - physiology
Osteopontin - genetics
Osteopontin - metabolism
Osteoporosis
Parathyroid Hormone - pharmacology
Physical Sciences
Proteins
Real time
Research and Analysis Methods
RNA, Small Interfering
Side effects
Signal Transduction - drug effects
Sp7 Transcription Factor
Stem cells
Stimulation
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ClC-3%20chloride%20channel%20mediates%20the%20role%20of%20parathyroid%20hormone%20%5B1-34%5D%20on%20osteogenic%20differentiation%20of%20osteoblasts&rft.jtitle=PloS%20one&rft.au=Lu,%20Xiaolin&rft.date=2017-04-24&rft.volume=12&rft.issue=4&rft.spage=e0176196&rft.epage=e0176196&rft.pages=e0176196-e0176196&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176196&rft_dat=%3Cproquest_plos_%3E1891888556%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-24ad937239c78e5fdb80ab6a72092eecfe967ec04fc75f8211b272e3fd5f5bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891395280&rft_id=info:pmid/28437476&rfr_iscdi=true